IDR: A new generation of Krylov subspace methods?

Olaf Rendel, Anisa Rizvanolli, Jens-Peter M. Zemke

Institut für Mathematik; Technische Universität Hamburg-Harburg; D-21073 Hamburg; Germany

Abstract

The Induced Dimension Reduction (IDR) technique developed by Sonneveld and van Gijzen is a powerful concept resulting in a variety of transpose-free Krylov subspace methods based on short-term recurrences. We present the main differences between and similarities of IDR methods and classical Krylov subspace methods; our tool of trade is the so-called generalized Hessenberg decomposition. The concept of “transfer” of techniques from the setting of (classical) Krylov subspace methods to the IDR based methods is introduced. For simplicity, we only sketch some recent results in the fields of eigenvalue computations and of solution of linear systems.

Keywords: Induced dimension reduction, Krylov subspace method, transpose-free method, iterative method, eigenvalue computation, linear system

2010 MSC: 65F10, 65F15

1. Introduction

IDR [1] by Sonneveld and the more recent generalization IDR(s) [2] by Sonneveld and van Gijzen are transpose-free short-term iterative methods that are linked to variants of Lanczos’s process [3, 4], namely, to variants with one right-hand and several left-hand starting vectors [5]. There has been an increased interest in IDR based methods [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] during the last years, and, at the same time, many have a somewhat skeptical attitude concerning these new developments. In this contribution we intend to bridge the gap, to simplify and unify existing theory for IDR based methods, and outline some forthcoming developments.

1.1. Motivation

The original IDR method [1] acted as initial nucleus for a rapid development of classical Krylov subspace methods: soon Sonneveld presented CGS [17] and started to work on a reformulation of IDR with van der Vorst, resulting in the famous BiCGStab [18, 19]. Original IDR is the

*Dedicated to the memory of Muharem Rizvanolli (*08.12.1946 – †02.09.2011).

*Corresponding author

Email addresses: olaf.rendel@tu-harburg.de (Olaf Rendel), anisa.rizvanolli@tu-harburg.de (Anisa Rizvanolli), zemke@tu-harburg.de (Jens-Peter M. Zemke)

URL: http://www.tu-harburg.de/~matjz/ (Jens-Peter M. Zemke)

Preprint submitted to Linear Algebra and Its Applications April 15, 2012
forgotten ancestor of a whole branch of new methods, which are frequently termed ‘Lanczos-type product methods’, ‘Hybrid BiCG methods’, or ‘Krylov product methods’. Below we propose the simpler name Sonneveld methods to capture these and those built upon the prototype IDR(s) [2]. The other methods related to original IDR include in succession BiCGStab2 [20], BiCGStab(ℓ) [21], GCGS [22] (in particular CGS2 and shifted CGS), GPBiCG [23], BiCGSafe [24], TFQMR [25], QMRBGNCGS [26], TFQMR and TFILanczos [27], and last but not least, ML(k) BiCGStab [28]. All these methods rely on the Lanczos method and can break down for several reasons. The composite step methods by Chan and Szeto [29, 30] avoid one type of breakdown. Of all the methods mentioned, ML(k)BiCGStab is special in relying on several left-hand starting vectors in the underlying Lanczos process; it is the first transpose-free short-term method of that type.

With IDR(s) [2] a new method of exactly this type has been published. Similarly, despite the fact that Yeung and Chan developed such a method before Sonneveld and van Gijzen, the transition to higher dimensional shadow spaces, as proposed in [2], stirs up a renewed rapid development of new Krylov subspace methods. The reason is simple: the approach of Sonneveld and van Gijzen is based on a geometric understanding, namely, the IDR Theorem, whereas the approach by Yeung and Chan is a rather technical one that can not easily be adapted to other flavors of Krylov subspace methods. In this paper we show how to transfer the techniques developed for the original IDR and other Krylov subspace methods to the IDR setting, e.g., to incorporate higher dimensional shadow spaces into well-known approaches. What may appear to be a rather simple technical step offers enhanced convergence properties; Sonneveld methods have the power to bridge the gap between methods based on Lanczos’s process and the Arnoldi method [31]. A recent step towards an explanation of this phenomenon is given in [14]; we present numerical experiments to justify this hypothesis, compare with the remarks in [32].

Peter Sonneveld could be titled ‘the father of IDR based methods’ as he developed the original IDR between 1976–1979, came up with CGS, initiated the work on the famous BiCGStab, and finally came up with IDR(s) jointly with Martin B. van Gijzen. To honor Peter Sonneveld, from now on we refer to IDR based methods as Sonneveld methods.

1.2. Notation

We use boldface letters to denote matrices and vectors. The identity matrix of size $n \times n$ is denoted by I_n, its columns by e_j, $1 \leq j \leq n$, and its elements by Kronecker delta δ_{ij}, $1 \leq i, j \leq n$. A zero matrix of size $n \times k$ is denoted by $O_{n,k}$, a column vector of length k by \mathbf{o}_k. We omit indices when they are easily deducible from the context. The matrix $A \in \mathbb{C}^{n \times n}$ is the system matrix of a linear system and/or we are interested in some of its eigenvalues. We remark that we do not impose any further structure on A. The spectrum of A is denoted by $\sigma(A)$. Column vectors of matrices are denoted by the same letter, e.g., $a_j \in \mathbb{C}^n$, $1 \leq j \leq n$, are the column vectors of A. Scalars are denoted by Greek letters, entries of matrices and vectors are denoted by small Roman letters, e.g., a_{ij} is the entry of A in row i and column j. Spaces are denoted by calligraphic letters like S, K_i, G_i. The letter S is used in two contexts: as a subspace of codimension s and to denote Sonneveld spaces. The letter K without index denotes the full Krylov subspace of A and starting vector g_i. Sonneveld methods are related to a set of basis vectors that live in certain spaces G_j. These are denoted by $G_j \in \mathbb{C}^n$ and are collected in matrices $G_k \in \mathbb{C}^{n \times k}$, $1 \leq k$. Krylov methods in general, and Sonneveld methods in particular, compute unreduced extended Hessenberg matrices. These are denoted by $H_k \in \mathbb{C}^{(k+1)\times k}$, where the underbar should remind of an additional row vector appended at the bottom of the square upper Hessenberg matrix.
Numerical experiments indicate that this Lanczos process is the driving force behind Sonneveld. This reveals that IDR methods are based on an underlying Lanczos process, see also [13, 10].

Let the columns of \(\tilde{R}_0 \in \mathbb{C}^{n \times s} \) form a basis of \(S^1 \). We state this as \(S = \tilde{R}_0^\dagger \). In [12, Theorem 11, p. 1104, Note 2, p. 1105] it is proven that with \(M_j(z) := \prod_{\ell=1}^{j}(\mu_\ell - z) \), \(j \geq 1 \), and \(M_0(z) := 1 \),

\[
G_j = S(M_j(A, \tilde{R}_0)) := \{ M_j(A) v \mid v \in G_0, v \perp K_j(A^H, \tilde{R}_0) \}, \quad 0 \leq j \leq m. \tag{2}
\]

This reveals that IDR methods are based on an underlying Lanczos process, see also [13, 10]. Numerical experiments indicate that this Lanczos process is the driving force behind Sonneveld.
methods. IDR spaces are polynomial images of the orthogonal complement of spaces of increasing dimensions, thus form a sequence of nested spaces of shrinking dimension, hence the name Induced Dimension Reduction (IDR). We fix the index \(m \) to be the first index such that no new dimension reduction occurs, i.e., \(m \) is the first index such that \(\mathcal{G}_{m+1} = \mathcal{G}_m \). Some details are collected in the so-called IDR theorem, which we extend here:

Theorem 1: IDR Theorem, see [2, Theorem 2.1],[12, Theorem 7, Corollary 13]

Let the IDR spaces \(\mathcal{G}_j, 0 \leq j \leq m \), be defined as above and characterized by Eqn. (2). Suppose that \(\mathcal{G}_0 \) and \(\mathcal{S} \) do not share a nontrivial common invariant subspace\(^1\) of \(A \). Then

\[
\mathcal{G}_j \subset \mathcal{G}_{j-1}, \quad 1 \leq j \leq m \leq n, \quad \text{and} \quad \mathcal{G}_m = \{0\},
\]

\[
\dim(\mathcal{G}_j) = \dim(\mathcal{G}_0) - \dim(\mathcal{K}_j(A^H, \tilde{R}_0)) - \dim(\ker(M_j(A)) \cap \mathcal{G}_0 \cap \mathcal{K}_j(A^H, \tilde{R}_0)^\perp) + (n - \dim(\mathcal{G}_0 \cup \mathcal{K}_j(A^H, \tilde{R}_0)^\perp)).
\]

In the generic case \(A \) is non-derogatory and \(g_1 \) has components in direction of every eigenvector and principal vector and \(\mathcal{G}_0 = \mathbb{C}^n \), thus in this case Eqn. (4) simplifies to

\[
\dim(\mathcal{G}_j) = n - \dim(\mathcal{K}_j(A^H, \tilde{R}_0)) - \dim(\ker(M_j(A)) \cap \mathcal{K}_j(A^H, \tilde{R}_0)^\perp).
\]

In most applications \(\mu_i \notin \sigma(A) \), \(1 \leq i \leq j \), i.e., \(M_j(A) \) is regular, and thus in this case Eqn. (4) simplifies further to

\[
\dim(\mathcal{G}_j) = n - \dim(\mathcal{K}_j(A^H, \tilde{R}_0)).
\]

Proof. Eqn. (3) is contained in [2, Theorem 2.1]. Eqn. (6) is [12, Corollary 13]. The steps from Eqn. (4) to Eqn. (5) and from Eqn. (5) to Eqn. (6) are trivial. Eqn. (4) follows from Eqn. (2) utilizing \(\dim(B^TW) = \dim(W) - \dim(\ker(B) \cap \mathcal{W}) \), \(\dim(\mathcal{A} \cap \mathcal{B}) = \dim(\mathcal{A}) + \dim(\mathcal{B}) - \dim(\mathcal{A} \cup \mathcal{B}) \), and \(\dim(W^\perp) = n - \dim(W) \).

We note that we have two sources for dimension reduction, namely, expansion of the left block Krylov subspace, and roots of the polynomial \(M_j \) that are equal to eigenvalues of \(A \). The former indicates that typically we have a reduction by \(s \) per step, i.e., unless we have a deflation in the left block Krylov subspace. The latter usually is negligible but may be of importance in linear system solvers for finite fields and singular matrices. To understand some of the subtleties attached to singular matrices, we present an academic example:

Example 2.1: higher dimension reduction

Let

\[
A := \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}, \quad g_1 := e_{n-k+1}, \quad 1 \leq k \leq n,
\]

\[
\tilde{R}_0 := \begin{pmatrix}
e_l & e_{l+p}
\end{pmatrix}, \quad 1 \leq l < l+p \leq n.
\]

Then \(\mathcal{G}_0 = \text{span}(e_{l-k+1}, \ldots, e_l) \), i.e., \(\dim(\mathcal{G}_0) = k \). Observe that the assumptions of Theorem 1 are violated when \(l + p < n \), as the eigenvector \(e_n \) satisfies \(e_n \in \mathcal{G}_0 \cap \mathcal{S} \). We set all \(\mu_i = 0 \).

\(^1\)This does imply that no eigenvectors of \(A \) that are contained in \(\mathcal{G}_0 \) are contained in \(\mathcal{S} \), i.e., no eigenvector of \(A \) in \(\mathcal{G}_0 \) is perpendicular to all columns of \(\tilde{R}_0 \).
1 ≤ i ≤ j. The intersection with \(S = \tilde{R}_0^+ \) removes the standard unit vectors with indices \(l \) and \(l + p \), the multiplication with the shift-down operator \(A \) increases the indices by one and maps \(e_n \) to zero:

\[
G_1 = A(G_0 \cap \tilde{R}_0^+) = A \text{span}\{e_{n-k+1}, \ldots, e_{l}, \ldots, e_{l+p}, \ldots, e_n\}
\]

\[
= \text{span}\{e_{n-k+2}, \ldots, e_{l+1}, \ldots, e_{l+p+1}, \ldots, e_n\},
\]

here, e.g., \(e_l \) indicates that the standard unit vector with index \(l \) is missing. Similarly,

\[
G_2 = \text{span}\{e_{n-k+3}, \ldots, e_{l+1}, e_{l+p}, \ldots, e_{l+p+2}, \ldots, e_n\},
\]

\[
G_3 = \text{span}\{e_{n-k+4}, \ldots, e_{l+1}, e_{l+p}, e_{l+p+2}, \ldots, e_{l+p+3}, \ldots, e_n\},
\]

and so forth. If \(n - k + 3 \leq l, p > 2, \) and \(l + p + 3 \leq n \), the dimensions of the IDR spaces are given by

\[
\text{dim}(G_0) = k, \quad \text{dim}(G_1) = k - 3, \quad \text{dim}(G_2) = k - 6, \quad \text{dim}(G_3) = k - 9.
\]

In general, we observe a dimension reduction of \(3 = s + 1 \) for \(G_j \) as long as \(n - k + j < l, j \leq p, \) and \(l + p + j \leq n \). When \(n - k + j \geq l \) or \(j > p \), we have a deflation in the left block Krylov subspace. Depending on \(k, l, p \in \mathbb{N} \) we achieve different behavior, but in general we start with a reduction of \(3 = s + 1 \), this drops to \(2 = s \), then to \(1 = s - 1 \) until we end up with \(G_m = [0] \).

We sketch a simple theoretical generalization of the IDR Theorem and provide an alternate description of the resulting spaces, similar to [12, Corollary 13] based on the original proof of the IDR Theorem by Sonneveld given in [10].

Theorem 2: Perturbed IDR Theorem

Let \(G_0 \) be the full Krylov subspace as defined above. Define

\[
G_j := (\mu_j I - A)(G_{j-1} \cap S_j), \quad \text{codim}(S_j) = s,
\]

for \(\mu_j \in \mathbb{C} \) and possibly different subspaces \(S_j, 1 \leq j \leq m \).

Then

\[
G_j = M_j(A)G_j \cap \left(\bigcap_{i=1}^{j} (\mu_i I - A) \cdots (\mu_i I - A)S_j \right).
\]

Suppose that no \(\mu_i, 1 \leq i \leq j \) is equal to an eigenvalue of \(A \). Let matrices \(\tilde{R}_0^{(j)} = (\tilde{R}_0^{(j)})^\perp \). Denote \(G_j := \text{span}[\tilde{R}_0^{(j)}] = S_j^\perp \). Then

\[
G_j = G_0 \cap \left(\bigcap_{i=1}^{j} (\mu_i I - A) \cdots (\mu_i I - A)S_j \right) = G_0 \cap \left(\bigcap_{i=0}^{j-1} M_j(A)^{-1}M_j(A)S_{j-1} \right)
\]

\[
= G_0 \cap \left(\bigcap_{i=0}^{j-1} M_j(A)^{-H}M_j(A)^{-H}R_{j-i} \right) = G_0 \cap M_j(A) \left(\bigcap_{i=0}^{j-1} M_j(A)^{-H}R_{j-i} \right)^\perp
\]

Proof. Eqn. (8) is trivial and follows from the fact that \(B(\mathcal{A} \cap \mathcal{B}) = B\mathcal{A} \cap B\mathcal{B} \) for matrices \(B \) and subspaces \(\mathcal{A} \) and \(\mathcal{B} \). Since \(G_0 \) is an invariant subspace of \(A, M_j(A)G_0 \subseteq G_0 \). We have equality, as \(M_j(A) \) is regular by assumption. All inverses in the second equality in Eqn. (9a) are well-defined as all \(\mu_i \notin \sigma(A) \). The first equality in Eqn. (9b) is based on \(\mathcal{A}^\perp \cap \mathcal{B}^\perp = (\mathcal{A} \cup \mathcal{B})^\perp \); both equality signs in Eqn. (9b) use \(B^{-H}W^\perp = (B^{-H}W)^\perp \) for any regular matrix \(B \). \(\square \)
The generalized Sonneveld spaces defined as

$$S(M_1, \ldots, M_j, A, \overline{R}^{(1)}_0, \ldots, \overline{R}^{(j)}_0) := M_j(A) \left(\bigcup_{i=0}^{j-1} M_j(A)^i \overline{R}^{(j-i)}_0 \right) \label{10}$$

are again polynomial images of the orthogonal complement of, in the generic case, spaces of growing dimensions, thus, polynomial images of spaces of shrinking dimensions.

This perturbed IDR theorem and the generalized Sonneveld spaces are a generalization of the IDR theorem and the Sonneveld spaces: when all \(\overline{R}^{(i)}_0 \), \(1 \leq i \leq j \), are equal, we recover the IDR theorem and the Sonneveld spaces, as the polynomials form a basis of the polynomials of degree less \(j \). The perturbed IDR theorem is applicable when all \(\overline{R}^{(i)}_0 \), \(1 \leq i \leq j \), are perturbations of a single \(\overline{R}_0 \), e.g., because of finite precision computations, hence the name.

The IDR theorem forms the basis for vector recurrences with finite termination property where only as many vectors as needed at most are computed. The vectors constructed and the recurrence coefficients can be captured in the form of a matrix equation, a so-called generalized Hessenberg decomposition \([10]\). This is described in the next section.

3. Generalized Hessenberg decompositions

In the generic case we need at least \(s+1 \) vectors in \(\mathcal{G}_{j-1}, j \geq 1 \), to compute a non-trivial vector in the intersection \(\mathcal{V}_{j-1} = \mathcal{G}_{j-1} \cap \mathcal{S} \). In \(\mathcal{G}_0 \), mostly any basis \(g_1, \ldots, g_i \) of \(\mathcal{K}_i = \mathcal{K}_i(A, r_0) \) and one vector from \(\mathcal{K}_{i+1} \setminus \mathcal{K}_i \), e.g., \(Ag_i \), is used to compute \(g_{i+1} \in \mathcal{V}_0 \subset \mathcal{G}_0 \). For stability reasons we advocate to use Arnoldi’s method resulting in an Arnoldi decomposition \(A G_{i+1} = G_i H_{i+1} \) with orthonormal \(G_i = (g_1, \ldots, g_i) \in \mathbb{C}^{s \times s} \) and extended upper Hessenberg \(H_{i+1} \in \mathbb{C}^{s \times (s+1)} \). For the vector \(g_{i+1} \) there are three simple choices: use \(Ag_i \), use Arnoldi also for \(g_{i+1} \) or, where we assume that \(\overline{R}^{(i)}_0 G_i \) is regular, normalize \(Ag_i - G_i c \), where \(c \in \mathbb{C}^s \) solves \(\overline{R}^{(i)}_0 G_i c = \overline{R}^{(i)}_0 Ag_i \). This vector has to be computed in any case. We treat three different approaches to compute additional vectors in Sonneveld methods. To simplify the exposition we assume that no deflation occurs in the left block Krylov subspaces and that \(\mu_j \notin \sigma(A), j \geq 1 \).

The computation of new vectors in \(\mathcal{G}_j \) is based on \(\mathcal{G}_j \subset \mathcal{G}_{j+1}, \) i.e., Eqn. (3): given \(s + 1 \) vectors in \(\mathcal{G}_{j-1} \), we can compute one vector in \(\mathcal{V}_{j-1} \), which is essentially unique, choose \(\mu_j \) and map it to a vector in \(\mathcal{G}_j \) and also in \(\mathcal{G}_{j+1} \). Suppose we have \(s+k \) linearly independent vectors in \(\mathcal{G}_{j-1} \), then typically the intersection \(\mathcal{V}_{j-1} \) with \(\mathcal{S} \) has dimension \(k \) and we can compute \(k \) vectors in \(\mathcal{G}_j \). Thus, to obtain \(s+1 \) vectors in \(\mathcal{G}_j \), we need \(2s+1 \) vectors in \(\mathcal{G}_{j-1} \). There are different ways to compute vectors in the intersection \(\mathcal{V}_{j-1} \).

The approaches in \([2, 33, 11, 32]\) use only the last \(s+1 \) \(g \)-vectors, thus implementing the shortest recurrence possible. A prototype implementation of this scheme is given by

$$v_k := g_k - G_{k-x-k-1} c_k \in \mathcal{V}_{j-1}, \quad \text{where} \quad c_k := (\overline{R}^{(i)}_0 G_{k-x-k-1})^{-1}(\overline{R}^{(i)}_0 g_k), \quad g_{k+1} := (\mu_j I - A)v_k \in \mathcal{G}_j \subset \mathcal{G}_{j+1}. \quad (11)$$

Additionally, a basis transformation of the vectors we already have computed in \(\mathcal{G}_j \) can be utilized. The disadvantage of this scheme is that the projection matrix \(\overline{R}^{(i)}_0 G_{k-x-k-1} \) has to be updated in every step, the part of the work for the projection per step is \(O(s^3) \). In \([33]\) the projection matrices are nested upper triangular; the complexity drops to \(O(s^2) \) per step, at the cost of additional vector updates with long vectors.
In [13] a fixed set of \(s \) vectors is used, the projection matrix remains the same and needs to be factored only once every \(s + 1 \) steps. In contrast to the first group of approaches, this is a \(2s + 1 \) term recurrence. As a basis transformation the resulting \(g \)-vectors in \(\mathcal{G}_j \) are orthonormalized.

In both these groups of approaches the projection matrices may be ill-conditioned leading to large projection coefficients \(c \in \mathbb{C}^s \). We remark that the first vector in \(\mathcal{G}_j \) is computed using the same projection in every possible approach.

We propose a third approach: we use all available vectors in \(\mathcal{G}_{j-1} \) to compute a minimum norm solution in the projection step, i.e., for \(0 \leq i \leq s \) and for \(j \geq 1 \),

\[
\begin{align*}
\psi_{j,(i+1)i} & := g_{j,(i+1)i} - G_{(j-1)(i+1)i; j(i+1)i}c_i \in \mathcal{V}_{j-1}, \\
\text{where} \quad c_i & := (R_0^H G_{(j-1)(i+1)i; j(i+1)i}) R_0^H g_{j(i+1)i}.
\end{align*}
\] (12)

The resulting \(g \)-vectors in \(\mathcal{G}_j \) are then orthonormalized. Numerical experiments indicate that this third approach is slightly more robust than the other two. The additional cost for computing the minimum norm solution is of order \(O(s^3) \); this is negligible for small \(s \).

In Sonneveld methods we capture the computation of the basis vectors \(g_\ell \), \(1 \leq \ell \leq k + 1 \), in matrix form, a so-called generalized Hessenberg decomposition [10]:

\[
A V_k = AG_k U_k = G_{k+1} H_k.
\] (13)

Here, \(G_{k+1} = (g_k, g_{k+1}) = (g_1, \ldots, g_{k+1}) \in \mathbb{C}^{n \times (k+1)} \) accounts for the basis vectors\(^2\), \(U_k \in \mathbb{C}^{k \times k} \) is upper triangular and captures the projection coefficients \(c_j \), and \(H_k \) is extended unreduced (upper) Hessenberg and defined in terms of the basis transformations in \(\mathcal{G}_j \) and the projection coefficients \(c_j \) weighted by \(\mu_j \). The matrix \(V_k \) contains the vectors we computed in some \(\mathcal{V}_{j-1} \) in its columns. Both \(U_k \) and \(H_k \) are banded, the exact structure depends on the IDR variant used. In contrast to classical Krylov subspace methods [34, 3, 4, 31, 35] for \(A \in \mathbb{C}^{n \times n} \) can be described by a Hessenberg decomposition, which is the special case \(U_k = I_k \) and thus \(V_k = G_k \) of the generalized Hessenberg decomposition (13). In [32] we need another generalization of Eqn. (13) obtained when the middle term is missing, e.g., when an upper triangular \(U_k \) with \(V_k = G_k U_k \) not necessarily exists. This special case occurs in flexible IDR variants and is referred to as generalized Hessenberg relation.

IDR is a Petrov-Galerkin approach, see [9]. If \(\text{rank}(G_{k+1}) = k + 1 \), the rectangular extended Sonneveld pencil \((H_k, U_k)\) can be interpreted as rectangular projection of the pencil \((A, I_k)\):

\[
G_{k+1}^*(A, I_k) G_{k+1} U_k = G_{k+1}^*(AG_k U_k, G_{k+1} U_k) = G_{k+1}^*(G_{k+1} H_k, G_{k+1} U_k) = (H_k, U_k).
\] (14)

Here, \(U_k \in \mathbb{C}^{(k+1) \times k} \) denotes \(U_k \) with a zero row appended at the bottom. In classical Krylov methods we only have to consider \(H_k \) and its leading square part \(H_k \). It turns out that we can transfer most techniques known for classical Krylov subspace methods to Sonneveld methods, we only have to insert the upper triangular \(U_k \) at the correct places. We briefly sketch the resulting Ritz, harmonic Ritz, OR, and MR approaches. Some further extensions like flexible and multi-shift variants are described in [32]. All these approaches collapse to their well-known counterparts when \(U_k = I_k \).

\(^2\)Provided no breakdown occurs, \(K_{k+1}(A, g_1) = \text{span} \{g_1, \ldots, g_{k+1}\} \).
The Ritz approach is based on the Sonneveld pencil \((H_k, U_k)\), the leading square part of the extended Sonneveld pencil \((H_{s}, U_{s})\) [10]. Let \(s_k\) and \(\theta\) be defined by
\[
H_k s_k = \theta U_k s_k, \quad y_k := V_k s_k = G_k U_k s_k. \tag{15}
\]
Some of the Sonneveld Ritz values \(\theta_i\) coincide with the values \(\mu_j\). The other Sonneveld Ritz pairs \((\theta, y)\) can be used as approximations to eigenpairs of \(A\).

In the Sonneveld harmonic Ritz approach with shift \(\tau \in \mathbb{C}\) we proceed as follows. Let \(s_k\) and \(\theta\) be defined by
\[
I_k s_k = (\theta - \tau)(H_k - \tau U_k) U_k s_k, \quad y_k := V_k s_k = G_k U_k s_k. \tag{16}
\]
Some of the resulting Sonneveld harmonic Ritz pairs \((\theta, y)\) with shift \(\tau\) are approximations to some eigenpairs of \(A\). In an implementation a pencil similar to \((I_k, (H_k - \tau U_k) U_k)\) is used; no pseudo-inverse is computed. Using the extended Sonneveld pencil \((H_{s}, U_{s})\) ’as is’ implies that the roots \(\mu_j\) are approximations to eigenvalues of \(A\).

In both approaches for the computation of eigenvalues a purified and/or a deflated pencil can be used. Purification and deflation have been introduced in [10]: purification moves the known eigenvalues \(\mu_j\) of the Sonneveld pencil to infinite eigenvalues; deflation removes these infinite eigenvalues and constructs a smaller pencil. In the report [10] the non-trivial computation of Ritz vectors is sketched for purified/deflated IDR pencils, an extension to harmonic Ritz vectors still has to be done.

Most common Krylov subspace methods for solving linear systems can be classified into Orthogonal Residual (OR) approaches and Minimal Residual (MR) approaches. We suppose that \(H_k z_k = \frac{1}{k} r_k\) is regular, then
\[
z_k := H_k^T e_1 \|r_k\|, \quad x_k := V_k z_k = G_k U_k z_k. \tag{17}
\]

Suppose that \(G_{k+1}\) has full column rank. Define \(\hat{G}_k^T := \sum_{i=k+1}^{\infty} G_i^T G_i\), i.e., \(\hat{G}_k^T G_k = I_k\) and \(\hat{G}_k^T g_{k+1} = o_k\).

The norm of the \(k\)th OR residual can be estimated using \(\|g_{k+1}\|\) and \(\|h_{k+1} e_1^T z_k\|\):
\[
r_k = r_0 - A x_k = G_k (e_1 \|r_0\| - H_k z_k) - g_{k+1} h_{k+1} e_1^T z_k = -g_{k+1} h_{k+1} e_1^T z_k. \tag{19}
\]

We remark that the OR residuals are always parallel to the basis vectors. Especially, in case of an orthonormal \(G_{k+1}, \hat{G}_k = G_k\) and thus \(r_k \perp r_j, 0 \leq j < k\).

The MR approach is based on the small least-squares problem \(\|H_k z_k - e_1 \| \|r_0\|\| = \text{min}\). This problem is always uniquely solvable, as \(H_k\) is unreduced Hessenberg and thus has rank \(k\). We set
\[
\hat{z}_k := H_k^T e_1 \|r_0\|, \quad \hat{x}_k := V_k z_k = G_k U_k z_k. \tag{20}
\]
Define $\rho_k := \|H_kz_k - e_i\|_\infty$. Then the norm of the kth MR residual r_k can be estimated by
\[
\|r_k\| = \|r_0 - A_k s_k\| = \|G_{k+1}(e_i - r_0 - H_k z_k)\| \leq \|G_{k+1}\| \cdot \rho_k.
\] (21)

Suppose that $\|g_j\| = 1$, $1 \leq j \leq k+1$. Then $\|G_{k+1}\| \leq \sqrt{k+1}$. More refined bounds are possible in case of additional structure, see Lemma 4. If G_{k+1} is orthonormal, $\|r_k\| = \rho_k$ and we have a genuine residual minimization, which justifies the name MR.

4. Eigenvalue computations

The computation of eigenvalues based on IDR has been first considered in [10] for the prototype IDR(s) [2]. In [36] these results were extended to the IDR(s) variant described in [33]; in [37] the extension to the generalization IDRStab [13] of IDR that allows for stabilizing polynomials of higher degree was considered. For the reader’s convenience we gather the results obtained in [10, 36, 37] in this section and refer to [10] for the proofs. The knowledge about the properties of the pencils for eigenvalue computations obtained in [10, 36, 37] deepen our understanding and are a first step towards a genuine eigenvalue solver based on IDR.

4.1. The prototype IDR(s) [2]

In the terminology of [10] the prototype IDR(s) is of type ORs and denoted by IDR(s)ORs. ORs methods directly compute residuals but are potentially highly unstable. The recurrences of IDR(s)ORs [2, bottom of page 1039] have been reformulated in [10, Eqns. (4.4)+(4.5)],
\[
v_{k-1} = r_{k-1} - \sum_{\ell=0}^{s-1} (r_{k-\ell} - r_{k-\ell-1}) \gamma_{\ell}^{(k)} f_{\ell+1} \in V_{j-1}, \quad r_k = (I_n - \omega_j A)v_{k-1} \in G_j.
\] (22)
Here the parameters γ are chosen such that $v_{k-1} \in S$. Sorting terms results in the the kth column of a generalized Hessenberg decomposition. Collecting all columns we obtain the IDR(s)ORs generalized Hessenberg decomposition
\[
AR_kU_k^{\text{IDRORs}} = R_{k+1}H_k^{\text{IDRORs}}, \quad R_{k+1} = \begin{pmatrix} R_k & r_k \end{pmatrix} = \begin{pmatrix} r_0 & \cdots & r_{k-1} & r_k \end{pmatrix},
\] (23)
with the extended IDR(s)ORs Sonneveld pencil [10, Definition 4.4, p. 14] \((H_k^{\text{IDRORs}}, U_k^{\text{IDRORs}})\)
\[
H_k^{\text{IDRORs}} = Y_k, \quad U_k^{\text{IDRORs}} = Y_k D_{\omega_j}^{(k)},
\] (24)
where the upper triangular banded $Y_k \in \mathbb{C}^{n \times k}$ and the extended unreduced upper Hessenberg banded $Y_k \in \mathbb{C}^{(k+1) \times k}$ are defined by the starting Krylov subspace method used to compute a basis for \mathcal{K}_{s+1} and then columnwise in terms of the intersection parameters γ by
\[
Y_i e_i := \begin{pmatrix} 0_{i, i+1} & \gamma_1^{(i)} & \gamma_1^{(i)} \\ \gamma_2^{(i)} - \gamma_1^{(i)} & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ \gamma_s^{(i)} - \gamma_{s-1}^{(i)} & \gamma_s^{(i)} & \ddots \\ 1 - \gamma_s^{(i)} & \cdots & \gamma_1^{(i)} & 0_{k-i} \end{pmatrix}, \quad Y_i e_i := \begin{pmatrix} 0_{i, i+1} & \gamma_1^{(i)} & \gamma_1^{(i)} \\ \gamma_2^{(i)} - \gamma_1^{(i)} & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ \gamma_s^{(i)} - \gamma_{s-1}^{(i)} & \gamma_s^{(i)} & \ddots & \ddots \\ 1 - \gamma_s^{(i)} & \cdots & \gamma_1^{(i)} & 0_{k-i} \end{pmatrix}, \quad s < i \leq k.
\] (25)
The parameters ω enter the scene only in the diagonal matrix $D^{(0)}_\omega \in \mathbb{C}^{s \times s}$ defined by $e_j^* D^{(0)}_\omega e_j = \omega_j$, $j = [i/(s + 1)]$, c.f. [10, Theorem 4.1]. For every completed ω_j-block this Sonneveld pencil by structure has an eigenvalue $1/\omega_j$, c.f. [10]. Setting all elements in certain upper triangular parts of Y_k to zero results in the purified IDR(s)ORes pencil [10, Theorem 4.8] that has the same eigenvalues as the IDR(s)ORes Sonneveld pencil, but the roots $1/\omega_j$ of the Omega polynomials have been replaced by infinite eigenvalues. Taking a Schur complement gives a deflated IDR(s)ORes pencil of smaller size that has only genuine eigenvalue approximations. These can be identified with those of a Lanczos(s, 1) process; it is easy to construct the coefficients of this Lanczos(s, 1) process from the deflated IDR(s)ORes pencil. For details we refer to the report [10]; we explicitly mention that the computation of Ritz values using the Sonneveld pencil is often badly conditioned and thus we propose to use either a purified of deflated pencil. This behaviour is reflected in the unstable behaviour of the prototype IDR(s), especially for large values of s, as a linear system solver.

4.2. “Elegant” IDR(s) [33]

In the generic case the first vector in a new space G_j is uniquely defined up to scaling. Once we have computed some vectors in a new space G_j, we can chose any linear combinations as new basis vectors that have better properties. This was first used in [33], e.g., to generate basis vectors and residuals $g_{j(s+1)+1}, r_{j(s+1)+1} \in G_j$, $0 \leq i \leq s$, that are orthogonal to the first $i - 1$ and i columns $r^{(0)}_i$ of R_0, [33, p. 5.6, Eqns. (12)+(13)]:

\begin{align}
 g_{j(s+1)+1} &\perp r^{(0)}_\ell, \quad 1 \leq \ell < i, \quad 0 \leq i \leq s, \quad j \geq 0, \tag{26a} \\
 r_{j(s+1)+1} &\perp r^{(0)}_\ell, \quad 1 \leq \ell \leq i, \quad 0 \leq i \leq s, \quad j \geq 0. \tag{26b}
\end{align}

Here, to be consistent with [33], the first residual is r_1, not r_0. In addendum to [33] we set $g_{j(s+1)+1} := -r_{j(s+1)+1} \in G_j$. The residual difference vectors $r_{j(s+1)+1} - r_{j(s+1)+1} \in G_j$, $0 \leq i \leq s$, are used as new basis vector candidates, [33, p. 5.5]. The simple basis transformation induced by biorthogonality makes the algorithm easy to implement, as the small linear systems resulting from the projection become nested lower triangular, and the resulting Sonneveld pencils are usually better conditioned.

Because of (26), the last residual in every cycle satisfies $v_{j(s+1)} := r_{j(s+1)+1} \in V_{j-1}$, $j \geq 1$, thus for every choice of $\omega_j \neq 0$,

\begin{equation}
 g_{j(s+1)+1} = -r_{j(s+1)+1} := -(I_n - \omega_j A)r_{j(s+1)+1} \in G_j. \tag{27}
\end{equation}

Since we construct $g_{j(s+1)+1} \in G_j$, $0 \leq i \leq s$, the remaining recurrences of “elegant” IDR(s)
[33, p. 5:8], called IDR(s)BiO in [10], for $1 \leq i \leq s$, $j \geq 1$, can be restated as:

$$V_{j+1} = r_{j+1} = \sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \in V_{j-1},$$

$$g_{j+1} := r_{j+1} - (I_n - \omega_j A) v_{j+1} = -\sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \in G_j,$$

$$r_{j+1} := r_{j+1} - g_{j+1} = r_{j+1} + \sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \in G_j.$$ (28)

Here, the parameters γ, α, and β ensure $v_{j+1} \in V_{j-1}$, the biorthonormality relations (26a) for the basis vectors, and the biorthonormality relations (26b) for the residual vectors, respectively. Removing the occurrences of v_{j+1} and r_{j+1}, and sorting terms results in the columns

$$A \left(-\sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} - \sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \right) \omega_j =$$

$$-\sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} + \sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \beta_{j+1} =$$

$$-\sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \beta_{j+1} + g_{j+1}.$$ (29)

with indices $(s+1) + i$, $1 \leq i \leq s$, of the generalized Hessenberg decomposition

$$AG_j U_{k+1}^{IDRBO} = G_{k+1} H_{k+1}^{IDRBO}, \quad G_{k+1} = \left(g_k, g_{k+1} \right) = \left(g_1, \ldots, g_k, g_{k+1} \right)$$ (30)

of IDRBiO. The missing columns with indices $(s+1)$ result from Eqn. (27):

$$A \left(-\sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \right) \omega_j =$$

$$-\sum_{i=0}^{j} g_{j-i} y_{j-i}^{(j+1)i+1} \beta_{j+1} + g_{j+1}.$$ (31)

The shape of the extended Sonneveld pencil $(H_k^{IDRBO}, U_k^{IDRBO})$ of IDRBiO looks similar to that of IDRORes, apart from additional zero patterns of s consecutive zeros in the rows $(s+1)$, $j \geq 1$. The IDR parameters γ enter both the upper triangular parts of H_k^{IDRBO} and U_k^{IDRBO}, the biorthonormalization parameters β for the residual vectors only U_k^{IDRBO}, and the biorthonormalization parameters α for the basis vectors only H_k^{IDRBO}. The parameters ω_j again are applied only in forming U_k^{IDRBO} and result in known eigenvalues $1/\omega_j$ of the square Sonneveld pencil $(H_k^{IDRBO}, U_k^{IDRBO})$ for every completed ω_j-block. The Sonneveld pencil of IDRBiO can and should be purified and deflated like in case of IDRORes.

4.3. IDR(s)Stab(ℓ) [11, 13]

In IDRStab the aim is to combine the advantages of the higher dimensional shadow spaces in IDR(s) with those of the higher dimensional minimization in BiCGStab(ℓ). In IDRStab, IDR
vectors are computed along with purified Lanczos vectors up to the IDR step $k(\ell + 1)$, where a (modified) GMRES polynomial Γ_k of degree ℓ is computed; then everything is repeated on a higher level with vectors that have as a common factor the product of all Γ-polynomials constructed thus far. In IDRstab, before the polynomial step, many different generalized Hessenberg decompositions along with the corresponding pencils can be defined, the most important ones are the full IDRstab pencil, useful in the error analysis, and the Lanczos-IDRstab pencil, useful in eigenvalue computations [37].

To understand IDRstab, thinking in terms of a Hessenberg scheme of matrices and vectors, see Eqn. (34), simplifies the derivation of the generalized Hessenberg decompositions and the corresponding pencils. In Sleijpen’s implementation, the following Sonneveld spaces are involved in the computation of the columns of the matrices in the diagonal of the Hessenberg scheme (34):

$$
\begin{align*}
G_{k(\ell+1)i}^{(k)} & := S(m_i \Gamma_1 \ldots \Gamma_k A, A, \bar R_0), & k \geq 0, & 0 \leq i \leq \ell. \\
V_{k(\ell+1)i}^{(k)} & := G_{k(\ell+1)i} \cap S,
\end{align*}
$$

Here, $k \geq 0$ denotes the kth cycle of IDRstab and $m_i(z) := z^i$ denotes the ith monomial function. E.g., the first space is given by $G_0 = K = K_0(A, r_0)$ as before, and apart from $G_{k(\ell+1)i}$ for $k > 1$, we mostly use the “traditional” update well known for the IDR spaces,

$$
G_{k(\ell+1)i+1} = A(G_{k(\ell+1)i} \cap S) = A^i V_{k(\ell+1)i}, \quad k \geq 0, \quad 0 \leq i < \ell. \tag{33}
$$

We stress the fact that the index of the left block Krylov subspace is given by the degree $k\ell + i$ of the polynomial defining the Sonneveld space, i.e., the order of the Sonneveld space [13, Definition 2.2], and thus mostly does not correspond to the index $k(\ell + 1) + i$ of the space $G_{k(\ell+1)i}$ constructed. In the kth cycle of IDRstab, the following matrices $G_{k,j}^{(k)} \in \mathbb{C}^{ns} \times s$ and vectors $r_{k,j}^{(k)} \in \mathbb{C}^s$ are computed:

$$
\begin{pmatrix}
G_{1,1}^{(k)}, r_{1,1}^{(k)} \\
G_{1,2}^{(k)}, r_{1,2}^{(k)} \\
G_{2,2}^{(k)}, r_{2,2}^{(k)} \\
\vdots \\
G_{\ell,\ell}^{(k)}, r_{\ell,\ell}^{(k)}
\end{pmatrix} \in \mathbb{C}^{(s+2)\ell \times (s+1)(r+1)}, \tag{34}
$$

here,

$$
\begin{align*}
G_{l,l}^{(k)}, r_{l,l}^{(k)} & \in G_{k(\ell+1)i-1}, & 1 \leq i \leq \ell + 1, \\
G_{l,l}^{(k)}, r_{l,l}^{(k)} & \in V_{k(\ell+1)i-1}, & 2 \leq i \leq \ell + 1, \\
G_{l,l}^{(k)}, r_{l+1,l}^{(k)} & \in G_{k(\ell+1)i}, & 2 \leq i \leq \ell,
\end{align*}
$$

where, with abuse of notation, $G_{l,l}^{(k)} \in G_{k(\ell+1)i-1}$ is shorthand for $G_{l,l}^{(k)} e_1, \ldots, G_{l,l}^{(k)} e_t \in G_{k(\ell+1)i-1}$. The relations $G_{l,l}^{(k)} = A G_{l,l}^{(k)}$ and $r_{l+1,l}^{(k)} = A r_{l+1,l}^{(k)}$, $1 \leq i \leq j$, are forced by construction. These

5The authors are very thankful to Gerard Sleijpen for providing us with a copy of his code.
allow to move inside the columns of the Hessenberg scheme (34) by synthetically multiplying with or dividing by A; this is used for the manipulation of the mathematical relations defining IDRStab. In simple IDR(s) methods only the diagonal of this scheme would be computed; in IDRStab additional sets of vectors are computed, which are necessary to complete the polynomial step. The freedom in choosing the basis vectors is fixed in [13] by computing orthonormal blocks G_{ii}, $2 \leq i \leq \ell + 1$, i.e., most matrices in the diagonal of the scheme are orthonormal.

Initialization is done using Arnoldi’s method which defines the first block column of the Hessenberg scheme (34) along with an extended Hessenberg matrix $H^{(0)} = H^{(0)}_{\ell+1}$ containing the orthonormalization constants,

$$
G_{1,1}^{(0)}e_1 := r_0/\|r_0\|_2, \quad G_{2,1}^{(0)} := AG_{1,1}^{(0)} = \left(G_{1,1}^{(0)} G_{2,1}^{(0)} e_1 \right) \begin{pmatrix} H^{(0)}_{1,1} & 0 \\ 0 & 1 \end{pmatrix}.
$$

(36)
The computation of the elements of the Hessenberg scheme (34) evolves along the diagonal and updates columnwise. The first primary residual $r^{(0)}_{1,1}$ of IDRStab is computed by oblique projection using $G_{2,1}^{(0)} = AG_{1,1}^{(0)}$ [13, Eqns. (5.3)+(5.4)],

$$
r_{1,1}^{(0)} := r_0 - G_{2,1}^{(0)}A_{1,1}^{(0)} = (I - G_{2,1}^{(0)}(R_0^{(0)}G_{2,1}^{(0)} - R_0^{(0)}))r_0 \in V_0
$$

$$
= r_0 - A_{1,1}^{(0)}A_{1,1}^{(0)} = G_{1,1}^{(0)}e_1\|r_0\|_2 - A_{1,1}^{(0)}A_{1,1}^{(0)}, \quad r_{2,1}^{(0)} := r_{1,1}^{(0)} \in G_1.
$$

(37)
The diagonal blocks $G_{ij}^{(k)}$, $2 \leq i \leq \ell + 1$ for $k \geq 0$, are updated as described in [13, Section 5.1] and are orthonormalized for enhanced stability, see [13, Section 5.4],

$$
G_{ij}^{(k)}e_j := (r_{i,j-1}^{(k)} - G_{i,j-1}^{(k)}e_j)/h_{i,1}^{(k)}, \quad G_{j+1,j}^{(k)}e_j := AG_{j,j}^{(k)}e_j,
$$

$$
G_{ij}^{(k)}e_{j+1} := \left(G_{i,j}^{(k)}e_j - G_{i,j-1}^{(k)}e_j - \sum_{q=1}^{j} G_{i,j}^{(k)}e_q h_{p,j+1}^{(k)} \right)/h_{j+1,j+1}^{(k)}
$$

$$
= A\left(G_{i,j}^{(k)}e_j - G_{i,j-1}^{(k)}e_j \right)/h_{j+1,j+1}^{(k)} - \sum_{p=1}^{j} G_{i,j}^{(k)}e_q h_{p,j+1}^{(k)})/h_{j+1,j+1}^{(k)}, \quad 1 \leq j < s,
$$

$$
G_{i,j+1}^{(k)}e_{j+1} := AG_{i,j}^{(k)}e_{j+1}, \quad 1 \leq j < s.
$$

(38)
Here, the columns of $\beta_{ij}^{(k)} \in \mathbb{C}^{\ell \times 1}$, $1 \leq i \leq \ell$, are chosen such that the result is contained in S, and the upper triangular matrix $H^{(k)}_{\ell+1} \in \mathbb{C}^{\ell \times \ell}$ contains the orthonormalization parameters that ensure that $G_{ij}^{(k)}$ is orthonormal. The (partially) purified basis vectors $G_{ij}^{(k)}$, $1 \leq j < i$ are obtained using synthetic division and result in similar update formulæ for the other matrices in the same column.

For $k \geq 0$, $2 \leq i \leq \ell$, the update of the vectors $r_{ij}^{(k)}$ in the diagonal proceeds as follows,

$$
r_{ij}^{(k)} := r_{i,j-1}^{(k)} - G_{i,j-1}^{(k)}A_{i,j}^{(k)} : = (I - G_{i,j-1}^{(k)}(R_0^{(k)}G_{i,j-1}^{(k)} - R_0^{(k)}))r_{i,j-1}^{(k)}
$$

$$
= A(r_{i,j-1}^{(k)} - G_{i,j-1}^{(k)}A_{i,j}^{(k)}) \in V_{k(i+1)+i-1}, \quad r_{i,j}^{(k)} := r_{i,j-1}^{(k)}.
$$

(39)
The (partially) purified vectors $\mu_{ij}^{(k)}$, $1 \leq j < i$ are obtained using synthetic division,

$$
r_{ij}^{(k)} := r_{i,j-1}^{(k)} - G_{i,j-1}^{(k)}A_{i,j}^{(k)}, \quad 1 \leq j < i.
$$

(40)
We remark that before the polynomial step occurs, IDR\textsubscript{stab} returns the Lanczos\((s,1)\) residuals \(r_{i,1}^{(0)}, 1 \leq i \leq \ell\), as primary residuals, compare with TFIQMR [27]; to our knowledge the computation of Lanczos\((s,1)\) quantities was first used in the IDR\((s)\) context in [10].

In the polynomial step,

\[
\begin{align*}
 r_{1,\ell+1}^{(k)} := r_{1,\ell}^{(k)} & = \sum_{i=1}^{\ell} r_{i+1,\ell}^{(k)} y_i^{(k)}, \\
 G_{1,1}^{(k+1)} := G_{1,\ell+1}^{(k)} & = \sum_{i=1}^{\ell} G_{i,\ell+1}^{(k)} y_i^{(k)}, \\
 G_{2,1}^{(k+1)} := G_{2,\ell+1}^{(k)} & = \sum_{i=1}^{\ell} G_{i,\ell+1}^{(k)} y_i^{(k)},
\end{align*}
\]

(41)

\(i.e., \) \(r_{1,\ell+1}^{(k)} = \Gamma_k(A) r_{1,\ell}^{(k)}, \) \(G_{1,1}^{(k+1)} = \Gamma_k(A) G_{1,\ell+1}^{(k)}, \) \(G_{2,1}^{(k+1)} = \Gamma_k(A) G_{2,\ell+1}^{(k)},\) where the polynomial \(\Gamma_k\) defined by \(\Gamma_k(z) := 1 - \sum_{i=1}^{\ell} y_i^{(k)} z^i\) is either a GMRes residual polynomial, or a modification thereof, as sketched in [38, 13]. By construction, \(G_{2,1}^{(k+1)} = AG_{1,1}^{(k+1)}\).

Up to step \(\ell + 1\), several generalized Hessenberg decompositions can be defined. The so-called IDR-\text{IDR}\textsubscript{stab} generalized Hessenberg decomposition captures the IDR variant that builds up the diagonal of the Hessenberg scheme \((34)\) and is given by

\[
AG_{\text{IDR}}^{(\ell+1)(s+1)-1} U_{\text{IDR-\text{IDR}\textsubscript{stab}}}^{(\ell+1)(s+1)-2} = G_{\text{IDR}}^{(\ell+1)(s+1)-1} H_{\text{IDR-\text{IDR}\textsubscript{stab}}}^{(\ell+1)(s+1)-2},
\]

(42)

where with \(\nu := (\ell + 1)(s + 1) - 2,\)

\[
\begin{align*}
 G^{\text{IDR}}_{(\ell+1)(s+1)-1} & := \begin{bmatrix} G_{1,1}^{(0)} & G_{1,2}^{(0)} & \cdots & G_{1,\nu+1}^{(0)} \end{bmatrix} \in \mathbb{C}^{\nu \times (\nu+1)}, \\
 U^{\text{IDR-\text{IDR}\textsubscript{stab}}}_{(\ell+1)(s+1)-2} & := \begin{bmatrix} L_{\nu-1} & -1 & 0^T \alpha_1 \beta_1 \alpha_2 \beta_2 \cdots \alpha_s \beta_s \cdots \alpha_\nu \beta_\nu \\ I & -1 & 0^T & \alpha_1 \beta_1 \alpha_2 \beta_2 \cdots \alpha_s \beta_s \cdots \alpha_\nu \beta_\nu \\ & & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \in \mathbb{C}^{\nu \times \nu \times \nu}, \\
 H^{\text{IDR-\text{IDR}\textsubscript{stab}}}_{(\ell+1)(s+1)-2} & := \begin{bmatrix} H_{1,1}^{(0)} & e_{1,1} \| r_0 \|_2 \\ \alpha_{\nu-1}^{(0)} & -1 \\ H_{s-1}^{(1)} & \cdots & \cdots & \cdots \\ -1 \\ \cdots \\ \cdots \\ H_{s-1}^{(\ell)} \\ \cdots \\ \cdots \end{bmatrix} \in \mathbb{C}^{(\nu+1) \times \nu \times \nu},
\end{align*}
\]

(43)

The undeflated Lanczos-IDR\textsubscript{stab} generalized Hessenberg decomposition is obtained by purifying the polynomials defining the IDR vectors, i.e., the columns of \(G_{(\ell+1)(s+1)-1}\), from the consecutive powers of \(A\) and is given by

\[
AG_{\text{Lanczos}}^{(\ell+1)(s+1)-1} U_{\text{Lanczos-IDR\textsubscript{stab}}}^{(\ell+1)(s+1)-2} = G_{\text{Lanczos}}^{(\ell+1)(s+1)-1} H_{\text{Lanczos-IDR\textsubscript{stab}}}^{(\ell+1)(s+1)-2},
\]

(44)
where the matrices are defined by:

\[
G^{\text{Lanczos}}_{\ell + 1} := \begin{pmatrix} G^{\text{Lanczos}}_{\ell + 1, \ell + 1} & G^{\text{Lanczos}}_{\ell + 1, \ell + 2} & \cdots & G^{\text{Lanczos}}_{\ell + 1, \ell + \ell} \end{pmatrix} \in \mathbb{C}^{\ell \times \ell},
\]

\[
H^{\text{Lanczos-IDRstab}}_{\ell + 1} := \begin{pmatrix} H^{\text{Lanczos-IDRstab}}_{\ell + 1, \ell + 1} & H^{\text{Lanczos-IDRstab}}_{\ell + 1, \ell + 2} & \cdots & H^{\text{Lanczos-IDRstab}}_{\ell + 1, \ell + \ell} \end{pmatrix} \in \mathbb{C}^{\ell \times \ell},
\]

Since the IDR variant driving IDRstab is based solely on multiplication with \(A\), the purification simply moves the \(\beta\)-blocks and some plus and minus ones from the upper triangular \(U^{\text{IDR-IDRstab}}_{\ell + 1, \ell + 1} - 2\) to the upper Hessenberg \(H^{\text{Lanczos-IDRstab}}_{\ell + 1, \ell + 1} - 2\). The resulting \(H^{\text{Lanczos-IDRstab}}_{\ell + 1, \ell + 1} - 2\) is singular, which is reflected in the \(\ell\) infinite eigenvalues of the Lanczos-IDRstab pencil that replace the \(\ell\) known zero eigenvalues of the IDR-IDRstab pencil.

There exist in total \(2^\ell\) generalized Hessenberg decompositions together with corresponding pencils describing the various paths in the Hessenberg scheme (34): after every IDR step we can either multiply with \(A\) and move in diagonal direction, or omit the multiplication with \(A\) and stay in that row. None of these pencils can easily be extended beyond the polynomial step, even though the diagonal elements of the scheme (34) build a basis of \(G_0 = \mathcal{K}\) provided no breakdown or deflation occurs. The reason is that the linear combination is along the last column of the scheme (34), thus we need either some algebraic transformations, or access to all the \(G\)-blocks in that column. One solution is the full IDRstab pencil that describes all the blocks in the upper triangular of the Hessenberg scheme (34). We do not discuss the full IDRstab pencil here.

As all the pencils contain the same eigenvalue information apart from zero or infinite eigenvalues due to the nature of Sonneveld methods and multiplication with \(A\) corresponding to the monomial \(m_1(z) = z\) with the only root zero, we use the Lanczos-IDRstab pencil that only has additional infinite eigenvalues. Even though we do not have the corresponding basis vectors, we can easily extend the pencil beyond the polynomial step and obtain a purified pencil in every step of IDRstab. This pencil can also be deflated to obtain the upper Hessenberg block-tridiagonal matrix of the underlying Lanczos(s, 1) process.
4.4. A numerical comparison

All numerical experiments were carried out using MATLAB 7.14.0.739 (R2012a) on a 64bit Arch Linux Laptop with Linux Kernel 3.3.1. We used the matrix \(e05r0500 \) and corresponding right-hand side \(e05r0500_rhs1 \) from the Matrix Market with zero initial guess. We tested the behaviour of the three algorithms for eigenvalue approximation, the parameters were chosen identical, e.g., we used the same \(R_0 \). We always used a purified pencil and MATLAB’s \texttt{eig}.

In Figure 1 we plotted the distances of the closest Ritz values of the purified pencils to the outlier \(\lambda \approx 4.2505 + 44.2719i \) computed with \texttt{eig} for \(s = 6 \). By nature of IDR, all these curves should intersect every \(s+1 = 7 \) steps. IDR(6)OrEig is based on OrthoRes(1) in the first steps, thus the first six approximations are pretty bad. IDR(6)OrEig is the most unstable method, IDR(6)BiO and IDR(6)Stab(\(\ell \)) are quite similar and show better convergence properties. Increasing the polynomial degree gives worse convergence behaviour, we suggest to use \(\ell = 1 \) or \(\ell = 2 \). The plot shows the average behaviour of these methods, except for IDR(6)BiO: the oscillations at the end came up roughly every seventh run when a random orthonormal \(R_0 \) was chosen. The methods based on (bi)orthonormalization are clearly superior in this example.

4.5. A thought experiment

Sonneveld methods have the power to bridge between Lanczos’s and Arnoldi’s method, compare with [14], where this statement is analyzed for the linear system case with Arnoldi’s method replaced by GMR\texttt{es}. In the eigenvalue counterpart, a similar observation can be made. In Figure 2 we present a supporting example based on the same data as in the previous subsection.
Comparison of Lanczos, Arnoldi, and IDRStabEig

Lanczos
IDR(s)Stab(1)Eig, s=1,2,6,24
Arnoldi

Figure 2: Comparison of Lanczos’s method, Sonneveld methods for varying s ($s = k!$ for $k = 1, \ldots, 4$), and Arnoldi’s method. The starting vectors have been chosen such that Lanczos’s method is mathematically equivalent with IDR(1).

We count every matrix-vector multiplication, i.e., in Lanczos’s method we count the multiplication with A and with A^H separately, thus we obtain a new Ritz value every other step. As IDR method we used IDRStab with $\ell = 1$, as this seems to be the stabllest method of the three methods considered. We used the first columns of one random orthonormal matrix as shadow vectors R_0 or left starting vector. Lanczos’s method is mathematically equivalent with the purified recurrence of IDR(1), which is clearly visible up to step 40. Afterwards, the two methods return different approximations due to finite precision issues. Increasing the value of s gives mostly a steeper convergence curve, i.e., the four IDR curves are clearly distinguishable despite we used the same line type. Already the convergence curve of IDR(6) is pretty close to the curve resulting from Arnoldi’s method, the curve of IDR(24) only slightly improves at the expense of much more memory necessary in the course of computation.

4.6. Towards a genuine IDR-based eigensolver

In order to compute good approximations to eigenvalues we need a stable basis represented by G_k. The numerical experiments lead us to the conclusion that choosing G_k ‘as orthonormal as possible’ is a good idea. Based on experiments with structured R_0 we mostly use orthonormalized random vectors. A high degree of the stabilizing polynomials, which are deflated in any case in the eigenvalue solvers, makes the methods more unstable. The choice of roots of these stabilizing polynomials has to be done carefully, as finite precision effects result in sometimes surprising behavior. Common in all IDR methods tested is the occurrence of past polynomial roots as spurious Ritz values in later iterations. We had good experiences with the ideas presented in [38, 13], but Rayleigh quotients with vectors from the recurrence also seem promising.
5. Solution of linear systems

There are many IDR based methods for the approximate solution of linear systems: IDRORes or \(\text{IDR}(s) \) [2], soon superseded by IDRBiO [33], which uses a bi-orthogonalization scheme for stability reasons, and the generalization IDRStan [11, 13] allowing for incorporation of stabilizing polynomials of degree larger than one. All these methods are of type OR. Methods of type MR are more recent [15, 32]. We remark that the well-known peak-plateau phenomenon discussed in [39] carries over to the corresponding pairs of OR and MR Sonneveld methods, as the coefficient vectors \(z_k \) and \(z_k \) are defined completely analogous, the difference to classical Krylov subspace methods lies in the basis used, i.e., \(V_k = G_k U_k \) replaces \(G_k \). Mathematically, the MR variant of a given OR variant can be obtained by smoothing [35]; in finite precision MR variants resulting from smoothing are not competitive with direct implementations of the MR approach, cf. [32]. Within the framework of generalized Hessenberg decompositions and relations it is easy to derive flexible and multi-shift variants [32].

In the next subsection we sketch an important peculiarity of IDR methods related to break-down of OR and stagnation of MR. Further subsections are devoted to the choices of a ‘good’ basis, the ‘stabilizing’ polynomials, and the shadow space.

5.1. Breakdown and stagnation

In classical Krylov subspace methods the occurrence of a singular Hessenberg matrix results in a temporary breakdown of the OR approach and a stagnation of the corresponding MR approach. In contrast, in IDR based methods there is the additional possibility of an absolute breakdown of the OR approach and an infinite stagnation of the MR approach. This is even more pronounced in multi-shift methods:

Lemma 3: Absolute breakdown and infinite stagnation in IDR

Suppose we solve a sequence of shifted systems \((A - \sigma I)x = r_0\) with an IDR method captured by the family of generalized Hessenberg decompositions

\[
(A - \sigma I)V_k = (A - \sigma I)G_k U_k = G_{k+1}(H_k - \sigma U_k) =: G_{k+1}H_k^{(\sigma)} = G_k H_k^{(\sigma)} + g_{k+1}h_{k+1,1}e_1^T.
\]

If in step \(k_\infty \) a new root of a stabilizing polynomial is equal to a shift \(\sigma \), all Hessenberg matrices \(H_k^{(\sigma)} \), \(k \geq k_\infty \), will be singular, i.e., the OR approach has an absolute breakdown, and the MR approach suffers from infinite stagnation.

Proof. By nature of Krylov subspace methods we know that \(g_{k+1} = g_k(A)r_0 \) for some stabilizing polynomial \(g_k \). By nature of IDR methods, i.e., utilizing the description of the Sonneveld spaces (2), this polynomial has the product of all previous stabilizing polynomials as a factor\(^4\). In [10, Theorem 2.2] it is proven that the basis vectors corresponding to a generalized Hessenberg decomposition satisfy \(g_k(z) = \det(zU_k - H_k)/\|r_0\| \prod_{\ell=1}^{k+1} h_{\ell+1,1} \). Thus, \(g_k(\nu) = 0, k \geq k_\infty \) for all roots \(\nu \) of the stabilizing polynomial chosen to compute \(g_{k+1} \). This implies that \(\det(H_k - \nu U_k) \) is zero, \(k \geq k_\infty \), and thus, for \(\sigma = \nu \), that \(H_k^{(\sigma)} = H_k - \sigma U_k \) is singular, \(k \geq k_\infty \).

\(^4\)More precisely: it can be written as a product of two polynomials, namely, the product of all previous stabilizing polynomials and a Lanczos(\(s, 1 \)) polynomial, compare with the special case treated in [10].
This lemma is easily applicable in case of given shifts (e.g., the only shift $\sigma = 0$, i.e., no multi-shift at all), or in IDR methods that rely on linear polynomials, i.e., excluding IDRstab. Similar to other types of breakdown, the roots should not be chosen “too close” to the shifts (zero). A precise interpretation of “too close” still has to be determined and a scheme for choosing the roots still has to be developed. Especially, the adaption of ideas to multi-shift variants appears to be non-straightforward. The sensitivity of IDR methods at the roots of the stabilizing polynomials is reflected in the numerical experiments; we observed for all the methods considered spurious Ritz values close to the previously used roots.

5.2. Choice of the basis

There is some freedom in the construction of the basis vectors g_j; we can use linear combinations with previously computed vectors in the same space in every new space G_{j+1}. A natural and old idea is to use the OR residuals as basis vectors, as these are always parallel to the basis vectors. This is done in IDRORs [2] and in the QMRIDR variant [15] based on it. Unfortunately, this approach is known to suffer from instabilities when zero is in the field of values of A and should not be used. Using the MR approach does not improve, as the basis itself is not stable.

More stable approaches are based on a partial orthonormalization of the basis vectors, like in Sleijpen’s implementation of IDRstab [13] or the QMRIDR variant [32]. These methods usually work better than the others, especially for larger values of s, and frequently result in a lower level of ultimately attainable accuracy. This can also be observed when these methods are used as eigenvalue solvers, as sketched in Section 4. Apart from an increased stability in the numerical experiments, we can also derive a better bound on the true residual. Our following result can originally be found in [32]:

Lemma 4: Norm of a block-wise orthonormal matrix

Suppose $G_{k+1} = (G^{(1)}, \ldots, G^{(j)})$, where $G^{(\ell)}$ is orthonormal, $1 \leq \ell \leq j$.

Then

$$\|G_{k+1}\| \leq \sqrt{j}. \quad (47)$$

Proof. Partition $w \in C^{k+1}$ block-wise into vectors w_ℓ conforming with the sizes of the blocks $G^{(\ell)}$, $1 \leq \ell \leq j$, i.e., $G_{k+1}w = \sum_{\ell=1}^{j} G^{(\ell)}w_\ell$. Then

$$\|G_{k+1}\|^2 = \max_{|w|^2 = 1} \|G_{k+1}w\|^2 = \max_{|w|^2 = 1} \| \sum_{\ell=1}^{j} G^{(\ell)}w_\ell \|^2 \quad (48)$$

Taking square roots proves the lemma. \qed

5.3. Choice of the stabilizing polynomials

In this subsection, we do not consider multi-shift variants. By Lemma 3 we should not use stabilizing polynomials with zero as a root. In [2, 33] this is enforced by using linear factors of type $I - \omega_j A$ in place of $\mu_j I - A$ in Theorem 1. All these linear factors, and thus their products,
have the value one at zero, i.e., are residual polynomials; similarly, in [13] the Γ-polynomials are constructed such that they are residual polynomials, see (41). In [2] the value of ω_j is chosen to minimize a residual, which might result in a small value of ω_j and thus a large root and thus Ritz value $1/\omega_j$ of the Sonneveld pencil. In [13, 33] this scheme is modified using the technique originally presented in [38]; this modification effectively circumvents large roots. The minimization of the norm of the next vector as a function of μ_j is partially justified, as the OR residuals are parallel to the basis vectors; with the technique in [38] this seems to be mostly stable. Other choices we tested are based on the following ideas and combinations thereof:

- We can enforce additional orthogonality, i.e., the first g-vector in a block can be chosen such that it is orthogonal to the last of the previous block.
- We can use approximations to eigenvalues, this is suggested in [9] based on Arnoldi’s method and in [10] based on IDR itself. We tried, e.g., the Rayleigh quotient of the last g-vector in the last block.
- We can dampen part of spectrum or the pseudospectrum. Based on estimates on the location of the spectrum or pseudospectrum, we could use, e.g., roots of Faber polynomials or Chebyshev points.
- We can optimize the roots to obtain well-conditioned Hessenberg and upper triangular matrices, or to be as close as possible to the coefficients of the underlying Lanczos($s, 1$) process. The latter was a motivation of the modification technique in [38].

We remark that in IDRStack the polynomials are determined at a later stage in the algorithm, where we have gathered some more information, which gives us more possibilities in the optimization of the polynomials, also in the case of degree one. Instead of a GMRes polynomial we tried an ideal GMRes polynomial, i.e., minimized $\|G_{k+1,l+1}\|$, see (41). All these ideas have been implemented and are quite successful; yet there are always matrices where one technique is better than the others, no automated best choice of a polynomial has been developed thus far.

5.4. The shadow space

The shadow vectors define the left block Krylov subspace and thus the projection (14). Inserting a priori information, i.e., motivated by properties of the system and/or the algorithmic variant, seems to be non-trivial, thus we always use orthonormalized random vectors. In [14] the difference between the resulting “random Galerkin projection” and the minimum residual projection is investigated. On average: the larger s, the closer IDR seems to be to GMRes, at the expense of increased storage and work.

6. Conclusions and outlook

The concept of a generalized Hessenberg decomposition defined in [10] enables us to transfer techniques known for classical Krylov subspace methods to the IDR based methods. To give the answer to the question raised in the title: IDR is an old idea, but the developments that started with IDR(s) are new, even if they are not unexpected, given the similarities to classical Krylov subspace methods. Currently, we seek the best IDR variant to compute a stable basis. This IDR variant can then be used to develop a genuine IDR eigenvalue solver and a QMRIDR variant based on stabilizing polynomials of degree larger than one. This is work in progress.
Acknowledgements

The authors would like to thank the organizers of ILAS 2011 for this pleasant and stimulating conference. The last author would like to thank the other two authors for their interest in IDR and the resulting fruitful collaboration during the past two years.

References

