USB Devices Phoning Home

Roland Schilling*

Hamburg University of Technology

schilling@tuhh.de

Frieder Steinmetz*

Hamburg University of Technology

frieder.steinmetz@tuhh.de

February 10, 2016

Abstract

USB is a versatile standard defining various fea-
tures to allow maximum flexibility for devices. This
flexibility, by design, leads to complex device con-
figurations, combining multiple functions into one,
making it impossible for users to identify the func-
tion of a device by its looks. This can be exploited
by crafting programmable USB devices, looking and
behaving like an ordinary flash drive that also ex-
pose virtual network devices and other functionality
to their host OS. This paper outlines such a device,
exploiting several USB features to establish a rogue
HTTP channel used to leak data stored on the de-
vice’s disk to an internet back end. We describe the
device itself and its architecture and our conclusions
and methods for dealing with the issues presented
in a user—friendly way.

Introduction

We present a USB flash drive capable of uploading
all files stored on it to a remote host on the In-
ternet. The device does not have its own Internet
uplink and uses its victim’s web browser to estab-
lish a rogue channel while she is browsing. We will
present several ways of establishing such a channel
hidden from the victim, including theoretical ones
that we found not to work reliably or not to work
at all on a modern operating system.

While presenting a very technical view on our im-
plementation of the attack, we would like to empha-
size the underlying problem, a connection standard
for electronic devices in which peripheral devices an-
nounce their function to the operating system. Con-
cepts such as compound devices in USB result in an
ecosystem in which users can never be sure to which
extent their expectations of a device are met. In-

*Authors listed alphabetically

stead of explicitly authorizing specific functions of
a USB device, users implicitly authorize whatever
functions a device advertises, simply by plugging
it in. In consequence, there can be a mismatch be-
tween the user’s expectations and the functions that
have been authorized.

USB has become the de facto standard for almost
all computer periphery. It is used for input devices,
storage devices, printers, network devices, sound de-
vices, web cams, and more. This flexibility comes
at the cost of a complex architecture where op-
erating systems have to be able to accept newly
attached devices on the fly and the devices them-
selves are responsible for communicating their pur-
pose and capabilities. These devices often are pro-
grammable which adds an additional layer of com-
plexity. The USB enumeration process in which a
device announces its features to the operating sys-
tem is completely hidden from the user. The actual
behavior of a device only becomes apparent once it
is plugged in and fully enumerated, making it im-
possible to guess the function of a device from its
looks. To an educated user it might seem plausible
that a smart phone plugged into a PC has an Inter-
net uplink of its own that can be used to redirect
the network traffic or leak data of the system it is
plugged into. If, however, the device plugged in is a
simple flash drive, such functionality might not be
expected. It is this discrepancy between user intent
and device behavior that we focus on with the flash
drive presented here. In the following sections we
will present the setup in detail and show that it is
a feasible albeit less reliable approach than a device
with a dedicated uplink.

Related Work

The device we describe breaks with fundamental
assumptions for storage devices. It demonstrates

that modern storage devices are general purpose
computers of their own and have the potential to
be used for things far beyond their original pur-
pose. This potential of USB storage devices in par-
ticular was demonstrated by Mulliner et al. when
they emulated a storage device on a gumstix board
and used it to exploit a Time of Check to Time of
Use (TOCTTOU) bug in a smart TV [5]. Travis
Goodspeed presented deeper insight into the capa-
bilities of custom USB storage devices in his talk at
the 29¢3 conference in 2012 [3]. Part of his findings
were different operating systems implementing USB
protocols distinctively enough to be uniquely identi-
fied. Andy Davis of NCC Group did an in—depth ex-
ploration of USB fingerprinting and found numerous
ways to reliably identify a host OS or even installed
applications [2]. A more offensive approach which
could in turn make use of in—depth knowledge of
the host configuration is emulating a keyboard and
sending keystrokes to compromise the host system.
This attack has been known since around 2010 [1]
and has even found its way into commercial prod-
ucts [4].

One of the most prominent works in this field is
BadUSB, presented by Nohl et al. in 2014 that sum-
marizes several projects from other groups into a
few concise scenarios [6]. Beside its core idea, the
talk describes seemingly harmless USB devices that
emulate keyboards and issue commands on behalf of
their victims, or smart phones, connected to a PC
that could use their own Internet uplink to redi-
rect a host’s network traffic hidden from its victim.
Nohl presented two case studies using USB network
device emulation; one consisting of a DNS server as-
signed by a USB device via DHCP, the other being
a simple network device rerouting all traffic through
a smart phone Internet uplink. His team used an
android phone advertising itself as DNS server via
DHCP and rerouted a list of domains. It resolved
all DNS requests for domains not on that list by
recursively asking another name server.

Implementation

Given the versatility of USB and the fact that most
computers today are connected to the Internet al-
ready, we started looking for a way of exploiting
the host uplink with a common USB virtual net-
work device and established technology like DNS,
DHCP, and routing. Our attack vector capitalizes
on the fact that today’s web sites often load content
and scripts from several different locations, which is

mostly invisible to the user. More to the point we
focus on web tracking and analytics services which
provide no benefit for the user and run in the back-
ground of a browser session. Removing or replacing
such a script would not impact the browsing ex-
perience and yet offer a way of injecting arbitrary
JavaScript into the victim’s browser sessions. We
found that many of these services use plain HTTP,
which makes it easy to reroute and modify their traf-
fic. In the following we will present two approaches
for exploiting a victim’s browser session to upload
files stored on our flash drive using different hidden
communication channels.

The setup of our attacks is simple. A USB flash
drive will expose both a removable disk and a net-
work device to its host OS. This is possible because
the USB standard defines a composite device that
uses one bus address to encapsulate the functional-
ity of multiple virtual devices called functions. For
more information on this, please refer to [7], or [8].
The network device runs a DHCP and — depending
on the attack — a DNS server. The DHCP server
is used to push a set of static routes to the host
OS. These routes instruct the OS to use the flash
drive as gateway for our target hosts. This setup is
detailed in figure 1.

The DNS server can be used to spoof DNS records
and redirect requests to arbitrary hosts. Because
different operating systems handle newly registered
DNS servers differently, this attack cannot be reli-
ably mounted in all situations. Our tests with Linux
and Mac OS X showed that DNS servers added after
the network has been set up are added with the low-
est priority so they are only used if all other resolvers
fail. On Windows 8 and 8.1 we were surprised to
see that a newly added DNS server becomes the im-
mediate default, making these versions the easiest
target operating systems for the attack.

In addition to the DNS and DHCP servers, the drive
runs a web server that serves all files necessary to
establish outside communication. Rerouting host
requests to this web server allows us to inject our
own JavaScript code into the victim’s browser ses-
sions as explained shortly.

All our attacks were implemented on a USB Armory
by Inverse Path!, a flash drive-sized ARM mini com-
puter running Linux. The drive was configured to
behave as a regular USB flash drive using the Linux

'http://inversepath.com/usbarmory

http://inversepath.com/usbarmory

Moqzlla

&€->0 | http://websitewithtracker.example |

USB Device

DHCP Server

Tracking Website

< DHCP: assign static routes]

[10.0.0.1]

V¥ Static Routes
v203.0.113.12

»10.0.0.1

v198.51.100.24

Lorem ipsum dolor sit amet, bvaeaes ’10001
consectetur adipiscing elit. Web

ebserver
B D) I s e

ir/c::r}cgigk.example/track.Js > [HTTP: GET track.example/track.js> D trackerscript.js
& J

Figure 1: Injecting code in a browser session on a website using a popular web tracking service: static
routes for the IP addresses of the tracker are used to redirect HT'TP requests to the USB device.
Those requests were originally meant to load the web tracker’s JavaScript code. Since they are
now routed to the USB device it can serve the C&C script instead.

USB Gadged API?. When plugged into a host ma-
chine, the drive will behave like a USB storage de-
vice and its user will find a removable disk she can
read from and write to. At the same time, a new
network device will be configured. This happens
in the background on all tested operating systems.
Once setup is done, storage data from the flash drive
can be leaked to a host on the Internet using one of
two approaches, depending on the host OS.

As stated, we target this attack on web tracking ser-
vices. These services are included by websites for
metering and advertising purposes. They do not
provide a benefit for the user and their operation
is completely hidden from her. We prepared a list
of both domain names and IP addresses of popu-
lar tracking and advertising services. We concen-
trate on services that can be used without HT'TPS
to avoid running into validation issues when pre-
senting possible fake certificates. This list is stored
on the hidden operating system of the flash drive.
The DHCP server on the drive will publish a route
to each of these IPs via its own network device.
The DNS server is configured to resolve each do-
main name on the list to the IP address of the web
server running on the USB device. After setup is
completed the target OS will try to resolve all pre-

Zhttp://www.linux-usb.org/gadget/

pared tracker domain names via the DNS resolver
on the flash drive and try to establish a connection
to these hosts via its published gateway. This is
the base setup for this attack. All this is performed
within the first seconds after the device is plugged
in and the setup is ready once the removable disk is
enumerated.

As soon as the victim visits a site that includes
a tracker, the browser makes a request for the
tracker’s JavaScript file. If the tracker is part of
the pre-compiled list and works without HTTPS,
the request is redirected to the USB device as ex-
plained earlier. The web server on the USB device
will respond with a prepared JS file that will be ex-
ecuted in the browser and establish a C&C channel
between the drive and a back end control server us-
ing a simple REST API as depicted in figure 2. The
JS code periodically polls both servers for data us-
ing AJAX requests and will download and forward
data from and to each side respectively. A service
on the USB device monitors files stored on its disk
and prepares them for its web server to publish to
the relay script. Files stored on the removable disk
of the device can now be transferred to the back end
server and modified data from the back end server
can be placed back on the disk. The back end server
can be a simple web server accepting POST requests
with file data in the body, or a more complex setup

http://www.linux-usb.org/gadget/

Moqzlla

&0 | http://websitewithtracker.example

USB Device

<script>
/I Injected Javascript

| Server |

// inter/intranet
<H'I'I'P POST /upload]

</script>

W Stolen
Il Images

I Docs

// working as communication
// relay between device
// and any server on the

Webserver
[10.0.0.1]

(HTTP: GET /get file) | 4mssmmseznnseeeaas.s .

Tracking Website

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

W Pictures

Q) Sensitive Pic.jpg

[Q Critical Info.doc

I Customer Data

Figure 2: Transfer files from the device to the C&C-server: a script has already been injected in the
currently open website. This script uses AJAX to get files from the device’s web server and
upload them to the back end server. The device monitors its removable disk for new files and

enqueues them for transmission.

capable of infecting received files with malware and
offering them to be transmitted back to the drive.
The return channel can also be used to update the
list of ad network IP addresses on the drive, adding
a bit more flexibility to this static approach. This
way the list of IP addresses can be kept reasonably
up—to—date by resolving the whole list on the back
end and having the USB device poll it in fixed in-
tervals.

A more elegant solution than rerouting requests to
a static list of IP addresses is to intercept DNS re-
quests for their respective domain names and resolve
them to the IP address of the web server running on
the USB device. This can be achieved by assigning
the drive as DNS server via DHCP. We wrote a cus-
tom DNS server based on GoDNS? for this purpose
that resolves domain names from our list of track-
ers and ad networks to the IP address of the USB
device and responds to other queries with a server
error that will make the host OS automatically fall
back to another DNS server from its list. This au-
tomatic fallback — while introducing a slight latency
— works reliably on all tested platforms. However,
in our tests with several flavors of Linux, Windows
in versions 7-10, and MAC OS X 10.9, only Win-

3https://github.com/kenshinx/godns

dows 8 and 8.1 accepted the new DNS server as their
new default resolver. All other tested operating sys-
tems would add a new resolver to the end of their
chain, rendering this approach ineffective. Only a
few corner cases exist despite that, where the DNS
method still works. If the target OS is configured
to use a popular third party DNS service as offered
by Google or OpenDNS, we can make this scenario
work on other platforms as well by pushing static
routes to these hosts via the USB device. On all
other tested platforms without these corner cases,
the static-route—approach with frequent updates to
the list of IP addresses is the more reliable solution.

Both presented solutions have shown to work re-
liably from an attacker’s point of view. Pushing
routes to IP addresses from a static list via DHCP
comes with obvious disadvantages but proves to
have the least impact on the performance of the
target OS. On the systems that accept the propa-
gated DNS server as default we see a little latency
whenever a domain name not on the list is resolved
by the OS. This is due to our solution of responding
with an error message and hence making the system
fall back to another DNS resolver.

Overall both solutions had the same effect of a re-
liable rogue HTTP channel whenever a web tracker

https://github.com/kenshinx/godns

from the list was included in a web session.The
fact that this attack exploits features of USB and
that hardware is generally trusted by a modern OS
makes this possible without the user taking notice
of any abnormal behavior.

Conclusion

We present a device that exploits the features of
common USB Plug and Play architectures. No im-
plementational bugs were necessary to create a de-
vice with capabilities far beyond its apparent pur-
pose. It appears to be a common flash drive but
uploads all files stored on it to a remote server, with-
out having an uplink of its own. The setup happens
mostly invisible to the user and works reliably on
all tested platforms. Since it hijacks a browser ses-
sion it relies on someone actively using the target
system. This is however something that can be as-
sumed for the most likely targets of such attacks
being workstations.

The problem that allows our attack to succeed
lies within the handling of attached USB devices.
To guarantee seamless Plug and Play modern OS
immediately load drivers according to the self-
proclaimed description of the device. Thereby —
depending on the driver — granting it access to cer-
tain aspects of the host system. The self-description
may however not reflect the form factor — which is
the only indication a user has of the nature of the
device. At this point the host might have exposed
its complete network stack to a device looking like
a flash drive or keyboard. Finally the lack of any
authentication in the DHCP protocol lets anyone
on the same network alter important aspects of a
systems network configuration. The combination of
those intended features expands the possibilities for
USB devices to a certainly unintended extend.

Preventing this by changing the USB Plug and Play
behavior may be done by asking the user for con-
firmation before loading a driver as proposed by
Steinmetz in [7]. A concise question whether the
type of device that presented it self to the Oper-
ating System is what the user intended to connect
should suffice. Since USB periphery has a clear set
of device classes, even an uneducated user should
be able to answer the question whether she wanted
to plug in a keyboard, mouse, removable disk, net-
work device, or something else. Finally, as users
expect something to happen on their screen upon
device plug—in, this dialog should not be perceived
as much of a nuisance.

All of the code we wrote to build the proof of con-
cept can be found in our GitHub repository?. Our
version of this attack is based on the USB Armory,
a € 100 programmable drive by Inverse Path. How-
ever, most of the versatility of this drive is not
needed to successfully mount the attack. Therefore
it is reasonable to assume that this can be realized
a lot cheaper on dedicated hardware; possibly even
reprogrammed actual flash drives as demonstrated
in the BadUSB attack [6].

References

[1] Adrian Crenshaw. Programmable HID
USB Keyboard/Mouse Dongle for Pen-
testing. DEF CON, 18, 2010. https:

//wwu.defcon.org/images/defcon-18/dc-
18-presentations/Crenshaw/DEFCON-18-
Crenshaw-PHID-USB-Device.pdf.

[2] Andy Davis. Revealing Embedded Fingerprints:
Deriving Intelligence from USB Stack Interac-
tions. Technical report, NCC Group, August
2013. https://media.blackhat.com/us-13/
US-13-Davis-Deriving-Intelligence-From-
USB-Stack-Interactions-WP.pdf.

[3] Travis Goodspeed. Writing a Thumb-
drive from Scratch, December 2012.
https://events.ccc.de/congress/2012/
Fahrplan/events/5327.en.html.

[4] HAK5. USB Rubber Ducky - The Origi-
nal Keystroke Injection Tool, November 2014.
https//www.usbrubberducky.com.

[5] Collin Mulliner and Benjamin Michéle. Read It
Twice! A Mass-Storage-Based TOCTTOU At-
tack.

[6] Karsten Nohl and Jakob Lehl. BadUSB-on
accessories that turn evil, 2014. https:
//srlabs.de/blog/wp-content/uploads/
2014/07/SRLabs-BadUSB-BlackHat-v1.pdf.

[7] Frieder Steinmetz. USB — An Attack Surface of
Emerging Importance. Bachelor’s Thesis, Ham-
burg University of Technology, March 2015.

[8] USB Implementers Forum Inc. Univer-
sal Serial Bus Revision 3.1 specification.
In USB Implementers Forum, Inc, July

2013. https//www.usb.org/developers/docs/
usb_31.121314.zip.

‘http://www.github.com/willnix/usbpoc

https://www.defcon.org/images/defcon-18/dc-18-presentations/Crenshaw/DEFCON-18-Crenshaw-PHID-USB-Device.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Crenshaw/DEFCON-18-Crenshaw-PHID-USB-Device.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Crenshaw/DEFCON-18-Crenshaw-PHID-USB-Device.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Crenshaw/DEFCON-18-Crenshaw-PHID-USB-Device.pdf
https://media.blackhat.com/us-13/US-13-Davis-Deriving-Intelligence-From-USB-Stack-Interactions-WP.pdf
https://media.blackhat.com/us-13/US-13-Davis-Deriving-Intelligence-From-USB-Stack-Interactions-WP.pdf
https://media.blackhat.com/us-13/US-13-Davis-Deriving-Intelligence-From-USB-Stack-Interactions-WP.pdf
https://events.ccc.de/congress/2012/Fahrplan/events/5327.en.html
https://events.ccc.de/congress/2012/Fahrplan/events/5327.en.html
https//www.usbrubberducky.com
https://srlabs.de/blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https//www.usb.org/developers/docs/usb_31_121314.zip
https//www.usb.org/developers/docs/usb_31_121314.zip
http://www.github.com/willnix/usbpoc

	Introduction
	Related Work
	Implementation
	Conclusion

