A class of arbitrarily ill-conditioned floating-point matrices

Siegfried M. Rump

Abstract

Let \mathbb{F} be a floating-point number system with basis $\beta \geq 2$ and an exponent range consisting at least of the exponents 1 and 2. A class of arbitrarily ill-conditioned matrices is described the coefficients of which are elements of \mathbb{F}. Due to the very rapidly increasing sensitivity of those matrices they might be regarded als “almost” ill-posed problems.

The condition of those matrices and their sensitivity with respect to inversion is given by means of a closed formula. The condition is rapidly increasing with the dimension. E.g. in the double precision of the IEEE 754 floating-point standard (base 2, 53 bits in the mantissa including implicit 1) matrices with 2^n rows and columns are given with a condition number of approximately $4 \cdot 10^{32n}$.

AMS classification: 15A12, 65F05, 65G05

Key words and phrases: condition number, sensitivity, ill-conditioned, linear systems, floating-point number systems.

0 Introduction

It is a trivial fact that there are arbitrarily ill-conditioned real matrices. In this paper we concentrate on matrices which are exactly representable in some floating-point number system \mathbb{F}. There is no restriction to the basis and only a trivial technical assumption on the exponent range of \mathbb{F}. For fixed \mathbb{F} there are finitely many square matrices with n rows and, despite infinity, a worst condition for given n.

The well-known schemes for constructing ill-conditioned matrices suffer from the fact that for given IF only few matrices are exactly representable in IF, say up to n_{max} rows. For $n > n_{\text{max}}$ rows the entries are getting “too big”. For example let

$$(Z_n)_{ij} := \frac{(n+i-1) \cdot n \cdot \binom{n-1}{n-j}}{i+j-1}$$

proposed by Zielke. For single precision in the IEEE 754 floating-point format (base 2 with 24 bit in the mantissa including implicit 1) we have (using infinity norm)

$$n_{\text{max}}(Z_n) = 10 \quad \text{with} \quad \|Z_{10}\| \cdot \|Z_{10}^{-1}\| \approx 2.1014.$$

From Pascal’s triangle we get

$$(P_n)_{ij} := \binom{i+j-1}{i-1}$$

with

$$n_{\text{max}}(P - n) = 15 \quad \text{with} \quad \|P_n\| \cdot \|P_n^{-1}\| \approx 1 \cdot 10^{16}. $$

The classical example for ill-conditioned matrices are Hilbert-matrices the ij-th component of which is $1/(i+j-1)$. In order to make them exactly representable in a binary floating-point format one may use its inverse or, one may multiply the entire matrix by $\text{lcm}(1, 2, \ldots, 2n-1)$. We call the latter matrix H^*_n. Then

$$n_{\text{max}}(H_n^{-1}) = 7 \quad \text{with} \quad \|H_n\| \cdot \|H_n^{-1}\| \approx 5 \cdot 10^8$$

and

$$n_{\text{max}}(H^*_n) = 10 \quad \text{with} \quad \|H^*_n\| \cdot \|H^*_n^{-1}\| \approx 2 \cdot 10^{13}.$$

The second method is obviously much more effective with respect to generating exactly representable ill-conditioned matrices. The class of matrices to be described in the following has no restriction in the dimension. In the single precision IEEE 754 floating-point number system there are 10×10-matrices with condition number $1.1 \cdot 10^{78}$.

1 The class of matrices

Let IF be a floating-point number system with base β, i.e. IF consists of real numbers of the form

$$\chi = \pm 0.m_1m_2\ldots m_\lambda \cdot \beta^e$$

(1)

with

$$0 \leq m_i < \beta \quad \text{for} \quad 1 \leq i \leq \lambda \quad \text{and} \quad e_{\text{min}} \leq e \leq e_{\text{max}}.$$

(2)
We do not require numbers in the gradual underflow range and assume

\[m_1 \neq 0 \quad \text{if} \quad \chi \neq 0. \quad (3) \]

Let \(\mathbb{IF} \) consist at least of all real numbers \(\chi \in \mathbb{IR} \) with a representation satisfying (1.1), (1.2) and (1.3) and assume \(e_{\min} \leq 1, \ 2 \leq e_{\max} \).

Consider Pell’s equation (see [1])

\[p^2 - k \cdot Q^2 = 1 \quad (4) \]

for positive integers \(P, Q \) and \(k \). If \(\beta \) is a square let \(k \) be the smallest prime factor of \(\beta \), otherwise set \(k = \beta \). Then (1.4) has infinitely many solutions \((P, Q) \) (see [1]).

Let \(P, Q \) be numbers satisfying Pell’s equation (1.4) for some \(k \) and let

\[P = \sum_{i=0}^{n} p_i \cdot \sigma^i \quad \text{and} \quad Q = \sum_{i=0}^{n} q_i \cdot \sigma^i \]

with \(p_n \neq 0 \) or \(q_n \neq 0 \) for some \(\sigma \in \mathbb{IN} \) and

\[|p_i|, |q_i| < \sigma, \ i = 0 \ldots n. \quad (5) \]

Furthermore we assume for this section \(0 \leq p_i, q_i < \sigma \) for \(i = 0 \ldots n \).

In practical applications a typical choice for \(\sigma \) is \(\beta^\lambda \). However, in this section we are interested in minimum requirements for the floating-point number system \(\mathbb{IF} \). Therefore we set \(\sigma = k \).

For \(\sigma = k \) the numbers \(p_i, q_i \) are of \(\mathbb{IF} \) if \(e_{\min} \leq 1 \leq e_{\max} \) and so is \(k \cdot q_i \) because \(k \cdot q_i < k^2 \leq \beta \). To store the number 1 requires 1 to be an admissible exponent, to store \(\sigma \) requires 1 or 2 to be admissible exponents. Therefore

\[p_i, k \cdot q_i, 1, \sigma \in \mathbb{IF} \quad \text{if} \quad e_{\min} \leq 1 \quad \text{and} \quad 2 \leq e_{\max} \]

and the matrix

\[C_n := \begin{pmatrix}
 p_n & p_{n-1} & \ldots & p_1 & p_0 & kq_n & kq_{n-1} & kq_1 & kq_0 \\
 q_n & q_{n-1} & \ldots & q_1 & q_0 & p_n & p_{n-1} & p_1 & p_0 \\
 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma \\
 \ldots & 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma \\
 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma \\
 \ldots & 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma & \ldots & 1 & -\sigma \\
 & \ldots & 1 & -\sigma \\
\end{pmatrix} \quad (6) \]
consists only of components being exactly representable in \mathbb{F}. Since (1.4) has infinitely many solutions the class of matrices C_n defined by (1.6) consists of elements with arbitrarily large number of rows.

2 Properties of the matrices

In this section some properties of the matrices defined by (1.6) will be studied. Here no restrictions on k or σ w.r.t. β are necessary; our only assumptions are (1.5) and (1.4). In the following especially the assumption $0 \leq p_i, q_i < \sigma$ for $i = 0 \ldots n$ is not necessary.

Throughout this paper we use componentwise ordering of matrices, i.e. $A \leq B :\iff a_{ij} \leq b_{ij}$ and the componentwise absolute value $|A| = (|A_{ij}|)$ which is again a matrix.

The condition number $\|C_n\| \cdot \|C_n^{-1}\|$ for the ∞-norm will be calculated and the sensitivity of C_n. Rohn gave in his paper [3] a nice definition of the sensitivity of a matrix C w.r.t. inversion:

Let B be a matrix of relative distance $\leq \alpha$ to C, i.e.

$$|B - C| \leq \alpha \cdot |C|$$

then

$$s_{ij}^\alpha(C) := \max \left\{ \frac{|B_{ij}^{-1} - C_{ij}^{-1}|}{|C_{ij}^{-1}|} ; \ |B - C| \leq \alpha \cdot |C| \right\}$$

provided $C_{ij}^{-1} \neq 0$ and

$$s_{ij}(C) := \lim_{\alpha \to 0} \frac{s_{ij}^\alpha(C)}{\alpha}.$$

In [3] Rohn proves an explicit formula for the sensitivity matrix $S = (s_{ij}(C))$:

$$s_{ij}(C) = \frac{(|C^{-1}| \cdot |C| \cdot |C^{-1}|)_{ij}}{|C^{-1}|_{ij}} \quad \text{for } C_{ij}^{-1} \neq 0. \quad (7)$$

Lemma 1. $\det(C_0); 1, \ |C_0|_\infty |C_0^{-1}|_\infty = (p + kQ)^2$ and $s_{ij}(C_0) = 4p^2 - 3$ for $i = j$ and $s_{ij}(C_0) = 4p^2 - 1$ for $i \neq j$.

Proof. For $n = 0$ (1.6) writes

$$C_0 = \begin{pmatrix} P & kQ \\ Q & P \end{pmatrix} \quad \text{with } C_0^{-1} = \begin{pmatrix} P & -kQ \\ -Q & P \end{pmatrix}$$

as follows from (1.4). Then the first two statements are obvious, for the third a short computation yields

$$(s_{ij}(C_0)) = \begin{pmatrix} \zeta & \eta \\ \eta & \zeta \end{pmatrix} \quad \text{with } \zeta = p^2 + 3kQ^2, \quad \eta = 3P^2 + kQ^2.$$
In the following we will show that for \(n > 0 \) the condition and sensitivity of \(C_n \) increases compared to those of \(C_0 \).

For the rest of the paper we frequently use

\[
C := C_n \in \mathbb{R}^{(2n+2) \times (2n+2)} \text{ with components } c_{ij}, \ 0 \leq i, j \leq 2n + 1. \tag{8}
\]

The indices of matrices start with \(= \) with the exception of \(A \) and \(B \) to be defined later on. Those are \((n+1) \times n \)-matrices with row indices starting with \(\sigma \) and column indices starting with \(1 \).

Lemma 2. The matrices \(C_n \) are not singular; it is \(\det(C_n) = (-1)^n \).

Proof. Define

\[
s := (\sigma^n, \sigma^{n-1}, \ldots, \sigma, 1)^t \in \mathbb{R}^{n+1} \tag{9}
\]

and

\[
x := \begin{pmatrix}
p \cdot \sigma^n \\
\vdots \\
p \cdot 1 \\
- \sigma \cdot Q \\
\end{pmatrix} \in \mathbb{R}^{2n+2}. \tag{10}
\]

Then

\[
(p_n, \ldots, p_0) \cdot s = P \text{ and } (q_n, \ldots, q_0) \cdot s = Q \tag{11}
\]

and using (2.2)

\[
\sum_{\nu=0}^{2n+1} c_{0\nu} \cdot x_\nu = p^2 - kQ^2 = 1 \]

\[
\sum_{\nu=0}^{2n+1} c_{1\nu} \cdot x_\nu = PQ = 0 = \sum_{\nu=0}^{2n+1} c_{i\nu} \cdot x_\nu \text{ for } i \geq 2.
\]

That means \(x \) is the first column of \(C^{-1} \) and especially

\[
(C^{-1})_{2n+1,0} = -Q. \tag{12}
\]

Therefore \(-Q = -\det(C) \det(C) \text{ with} \)
$$\overline{C} := \begin{pmatrix} q_n \cdots q_0 & p_n \cdots p_1 \\ \Sigma & 0 \\ 0 & \Sigma^* \end{pmatrix} \quad \text{and} \quad \Sigma := \begin{pmatrix} 1 & -\sigma \\ 1 & -\sigma \\ \vdots \\ 1 & -\Sigma \end{pmatrix}, \quad \Sigma^* := \begin{pmatrix} 1 & -\Sigma \\ 1 & -\Sigma \\ \vdots \\ 1 \end{pmatrix}.$$

But $\det(\overline{C}) = \det(\overline{C})$ with
$$\overline{C} := \begin{pmatrix} q_n \cdots q_0 \\ \Sigma \end{pmatrix}$$
and $\overline{C} \cdot s = Q \cdot e$ with $e = (1, 0, \ldots, 0)^t$. This implies
$$(\overline{C}^{-1})_{00} = \sigma^n/Q = \det(\overline{C})/\det(\overline{C})$$
with
$$\hat{C} := \begin{pmatrix} -\sigma \\ 1 & -\sigma \\ \vdots \\ 1 & -\sigma \end{pmatrix} \in \mathbb{R}^{n \times n}, \quad \det(\hat{C}) = (-1)^n \cdot \sigma^n.$$

Therefore
$$\det(C) = \frac{\det(\overline{C})}{Q} = \frac{\det(\overline{C})}{Q} = \frac{\det(\hat{C}) \cdot Q}{\sigma^n \cdot Q} = (-1)^n.$$

Next we calculate the inverse of $C = C_n$ explicitly. The first column is already given by (2.4), the second is given by
$$y := \left(\frac{-k \cdot Q \cdot c}{p \cdot s}\right) \in \mathbb{R}^{2n+2}, \quad C \cdot y = (0, 1, 0, \ldots, 0)^t. \quad (13)$$

(2.4) and (2.7) imply especially that $-Q$ and P are the first two elements of the last row of C^{-1}. Let
$$(-Q \ P \ \alpha_n \ \ldots \ \alpha_1 \ \beta_n \ \ldots \ \beta_1) \in \mathbb{R}^{2n+2} \quad (14)$$
be the last row of C^{-1}.

6
Then multiplication with the first \(n + 1 \) columns of \(C \) yields

\[
\begin{align*}
- Q \cdot p_n &+ p \cdot q_n + \alpha_n = 0 \\
- Q \cdot p_{n-1} &+ p \cdot q_{n-1} - \sigma \cdot \alpha_n + \alpha_{n-1} = 0 \\
&\quad \cdots \\
- Q \cdot p_1 &+ p \cdot q_1 - \sigma \cdot \alpha_2 + \alpha_1 = 0 \\
- Q \cdot p_0 &+ p \cdot q_0 - \sigma \cdot \alpha_1 = 0
\end{align*}
\]

(15)

Setting \(\alpha_0 = \alpha_{n+1} = 0 \) by definition gives

\[
- Q \cdot p_i + p \cdot q_i - \sigma \cdot \alpha_i + 1 + \alpha_i = 0 \quad \text{for } i = 0 \ldots n
\]

(16)

and by successively adding the equations in (2.9), multiplied by \(\sigma \) except the last one yields

\[
\alpha_i = Q \cdot \sum_{\nu=1}^{n} p_{\nu} \cdot \sigma^{\nu-i} - p \cdot \sum_{\nu=1}^{n} q_{\nu} \cdot \sigma^{\nu-i} \quad f
\]

(17)

By treating the last \(n + 1 \) columns of \(C \) in the same way gives

\[
- k \cdot Q \cdot q_i + p \cdot p_i - \sigma \cdot \beta_{i+1} + \beta_i = 0 \quad \text{for } i = 1 \ldots n
\]

\[
- k \cdot Q \cdot q_0 + p \cdot p_0 - \sigma \cdot \beta_1 = 1
\]

(18)

setting \(\beta_0 = \beta_{m+1} = 0 \) by definition and

\[
\beta_i = p \cdot \sum_{\nu=1}^{n} p_{\nu} \cdot \sigma^{\nu-i} - k \cdot Q \cdot \sum_{\nu=1}^{n} q_{\nu} \cdot \sigma^{\nu-i} \quad \text{for } i = 1 \ldots n.
\]

(19)

According to our assumption (1.5) \(p_n \neq 0 \) or \(q_n \neq 0 \) and

\[
\sum_{\nu=1}^{n} p_{\nu} \cdot \sigma^{\nu-i} < \sigma^n \leq p \quad \text{or} \quad \sum_{\nu=1}^{n} q_{\nu} \cdot \sigma^{\nu-i} < Q \quad \text{for } i \geq 1.
\]

Moreover, \(\gcd(P, kQ) = 1 \) such that (2.11) and 2.13) imply

\[
\alpha_i \neq 0 \quad \text{and} \quad \beta_i \neq 0 \quad \text{for } i = 1 \ldots n.
\]

(20)

Let \(\iota_i \in \mathbb{R}^{n+1,n+1} \) be a matrix with 1 in the \(i^{\text{th}} \) upper diagonal and 0 elsewhere such that

\[
\iota_i \cdot s = (\sigma^{n-i}, \ldots, \sigma, 1, 0, \ldots 0)^t \in \mathbb{R}^{n+1}
\]

(21)

using \(s \) from (2.3). Then we are ready to describe \(C^{-1} \):
Lemma 2. The inverse of $C = C_n$ defined by (1.6) is given by

$$
\begin{pmatrix}
P \cdot S & -k \cdot Q \cdot S & B \\
-Q \cdot S & P \cdot S & A \\
\end{pmatrix}
\begin{pmatrix}
k \cdot A \\
0 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
n+1 \\
\end{pmatrix}
\begin{pmatrix}
B \\
A \\
\end{pmatrix}
\begin{pmatrix}
n+2 \\
2n+1 \\
\end{pmatrix}
$$

(22)

with

$$
A := (\alpha_n s, \ldots, \alpha_1 s) \in \mathbb{R}^{n+1,n}
$$

and

$$
B := ((\beta_n I + \iota_n) \cdot s, \ldots, (\beta_1 I + \iota_1) \cdot s) \in \mathbb{R}^{n+1,n}.
$$

Proof. For the matrices $A = (a_{ij})$ and $B = (b_{ij})$ we have

$$
a_{ij} = \alpha_{n-j+1} \cdot \sigma^{n-i}
$$

and

$$
b_{ij} = \begin{cases}
\beta_{n-j+1} \cdot \sigma^{n-i} & j \leq i \\
\beta_{n-j+1} \cdot \sigma^{n-i} + \sigma^{j-i+1} & j \geq i + 1
\end{cases}
$$

(23)

for $i = 0 \ldots n$, $j = 1 \ldots n$ (the row indices start with 0, the column indices with 1). Denote the matrix defined by (2.16) by Γ. Then for $0 \leq i, j \leq n$ we have

$$(\Gamma \cdot C)_{ij} = p \cdot s_i \cdot p_{n-j} - k \cdot Q \cdot s_i \cdot q_{n-j} + b_{i,j+1} - \sigma \cdot b_{ij}$$

where the third summand cancels for $j = n$, the fourth for $j = 0$. Using $\beta_0 = \beta_{n+1} = 0$ and (2.17) yields

$$
(\Gamma \cdot C)_{ij} = \begin{cases}
t(i, j) & j < i \\
t(i, j) + \sigma^{j-i} & j = i \\
t(i, j) + \sigma^{j-i} + \sigma^{j-i-1} & j > i
\end{cases}
$$

using the abbreviation

$$
t(i, j) := \sigma^{n-i} \cdot (P \cdot p_{n-j} - k \cdot Q \cdot q_{n-j} + \beta_{n-j} - \sigma \cdot \beta_{n-j+1}).
$$

Therefore for $0 \leq i, j \leq n$

$$
(\Gamma \cdot C)_{ij} = \sigma^{n-i} \cdot (P \cdot p_{n-j} - k \cdot Q \cdot q_{n-j} + \beta_{n-j} - \sigma \cdot \beta_{n-j+1}) + \delta_{ij}
$$

(24)

using Kronecker’s δ. Since later on we need $|C^{-1}| \cdot |C|$ we write down the explicit formulae for the other components of $\Gamma \cdot C$. For $0 \leq i \leq n, n+1 \leq j \leq 2n+1$ derives

$$
(\Gamma \cdot C)_{ij} = \sigma^{n-i} \cdot k \cdot (P \cdot q_{n-j} - Q \cdot p_{n-j} + \alpha_{n-j} - \sigma \cdot \alpha_{n-j+1}),
$$

(25)

for $n+1 \leq i \leq 2n+1, \ 0 \leq j \leq n$

$$
(\Gamma \cdot C)_{ij} = \sigma^{n-i} \cdot (-Q \cdot p_{n-j} + P \cdot q_{n-j} + \alpha_{n-j} - \sigma \cdot \alpha_{n-j+1})
$$

(26)

8
and for \(n + 1 \leq i, \ j \leq 2n + 1 \)

\[
(\Gamma \cdot C)_{ij} = \sigma^{n-i} \cdot (-k \cdot Q \cdot q_{n-j} + P \cdot p_{n-j} + \beta_{n-j} - \sigma \cdot \beta_{n-j+1}) + \delta_{ij}.
\]

(27)

The identities (2.10) and (2.12) prove \((\Gamma \cdot C)_{ij} = \delta_{ij}\).

For the condition of \(C \) using the \(\infty \)-norm and \(\alpha_i \neq 0 \) is

\[
\|C\|_\infty \cdot \|C^{-1}\|_\infty > \left\{ \sum_{\nu=0}^{n} (p_\nu + k \cdot q_\nu) \right\} \cdot \left\{ \sigma^n \cdot (P + k \cdot Q) \right\} \\
= \left\{ \sum_{\nu=0}^{n} (\sigma^n p_\nu + k \sigma^n q_\nu) \right\} \cdot (P + kQ) \geq (P + k \cdot Q)^2.
\]

(28)

We calculate the sensitivity \(s_{ij}(C) \) according to (2.1) for \(0 \leq i \leq n, \ j = 0 \). By (2.18) we have

\[
(|C^{-1}| \cdot |C|)_{i\nu} \geq \sigma^{n-i} \cdot (P \cdot |P_{n-\nu}| + k \cdot Q \cdot |q_{n-\nu}| + |\beta_{n-\nu}| + \sigma \cdot |\beta_{n-\nu+1}|)
\]

for \(0 \leq \nu \leq n \) and by (2.19)

\[
(|C^{-1}| \cdot |C|)_{i\nu} \geq \sigma^{n-i} \cdot k \cdot (P \cdot |q_{n-\nu}| + Q \cdot |P_{n-\nu}| + |\alpha_{n-\nu}| + \sigma \cdot |\alpha_{n-\nu+1}|),
\]

for \(n + 1 \leq \nu \leq 2n + 1 \).

Using \(\alpha_\nu, \beta_\nu \neq 0 \) we get for \(0 \leq i \leq n \)

\[
(|C^{-1}| \cdot |C| \cdot |C^{-1}|)_{i0} = \sum_{\nu=0}^{n} (|C1-1| \cdot |C|)_{i\nu} \cdot |C^{-1}|_{\nu0} + \sum_{\nu=0}^{2n+1} (|C^{-1}| \cdot |C|)_{i\nu} \cdot |C^{-1}|_{\nu0}
\]

\[
\geq \sigma^{n-i} \cdot \sum_{\nu=0}^{n} \left\{ (P \cdot |P_{n-\nu}| + k \cdot Q \cdot |q_{n-\nu}|) \cdot p \cdot \sigma^{n-\nu} + k \cdot (P \cdot |q_{n-\nu}| + Q \cdot |p_{n-\nu}| \cdot Q \cdot \sigma^{n-\nu}) \right\}
\]

\[
+ \sigma^{n-i} \cdot \left\{ \sum_{\nu=0}^{n} (|\beta_{n-\nu}| + \sigma \cdot |\beta_{n-\nu+1}|) \cdot P \cdot \sigma^{n-\nu} + \sum_{\nu=0}^{n} (|\alpha_{n-\nu}| + \sigma \cdot |\alpha_{n-\nu+1}| \cdot k \cdot Q \cdot \sigma^{n-\nu}) \right\}
\]

\[
\geq \sigma^{n-i} \cdot p \cdot (P^2 + kQ^2 + kQ^2 + kQ^2) + \sigma^{n-i} \cdot P \cdot 4
\]

\[
= \sigma^{n-i} \cdot P \cdot (4P^2 - 3 + 4) > \sigma^{n-i} \cdot P \cdot (4P^2).
\]

Using \(k \cdot Q \geq P \). Together with \(|C^{-1}|_{i0} = \sigma^{n-i} \cdot P \neq 0 \) follows

\[
S_{i0}(C) > 4P^2 \quad \text{for} \quad 0 \leq i \leq n.
\]

This proves

Theorem 3. The matrix \(C \) defined by (1.6) satisfies

\[
\|C\|_{\infty} \cdot \|C^{-1}\|_{\infty} > (P + k \cdot Q)^2
\]

and there are components of \(C \) the sensitivity defined by (2.1) of which is greater than \(4 \cdot P^2 \).
3 Some examples

For given k suitable pairs (P,Q) satisfying Pell’s equation $P^2 - k \cdot Q^2 = 1$ are easily generated. Given some (P_0, Q_0) unequal the trivial solution (1.0) successive solutions are

$$(P_{i+1}, Q_{i+1}) = (P_0 P_i + k Q_0 Q_i, Q_0 P_i + P_0 Q_i).$$

For a floating-point number system given by (1.1), (1.2), (1.3) a choice for σ is β^λ. Any expansion (1.5) of P, Q is suitable. The coefficients p_i, q_i are calculated successively.

Some bits can be saved by observing the following. If some coefficient p_i is divisible by β or by a power of β then p_i and the following $p_j, j > i$ are expressed with a corresponding exponent. If the last digit m_λ in the mantissa of p_{i+1} is equal to $\beta - 1$, then p_i can be replaced by $p_i - \sigma$ and p_{i+1} by $p_{i+1} + 1$, the latter being divisible by β.

For example let $P = 73942, \beta = 10, \sigma)100$, then expanding P yields $(p_2, p_1, p_0) = (7, 39, 42)$ and is reduced by the method just described to $(p_1, p_0) = (74 \cdot 10^1, -58)$. Especially for base 2 this method is useful.

For a given number P the corresponding coefficients $p_i, i = 0 \ldots n$ can be calculated by the following algorithm:

```plaintext
\begin{align*}
e & = 0; \quad i = 0; \\
\text{repeat} & \\
\text{while } P \mod \beta = 0 \text{ do } \{ P = P/\beta; \quad e = e + 1 \}; \\
q & = \lfloor P/\sigma \rfloor; \quad r = P - \sigma \cdot q; \\
\text{if } (q \mod \beta \neq \beta - 1) \text{ or } (q < \beta) & \\
\text{then } \{ p_i = r \cdot \beta^e; p = q \} \\
\text{else } \{ p_i = (r - \sigma) \cdot \beta^e; P = q + 1 \}; \\
i & = i + 1 \\
\text{until } P = 0;
\end{align*}
```

For $k = 2$ successive pairs P, Q are $(3, 2), (17, 12), (99, 70) \ldots$. In the following we display some values for p_i, q_i for IEEE 754 single and double precision. For the individual value of n (resulting in a $2n \times 2n$-matrix C) we choose the maximum values (P, Q) being representable.
by \((p_{n-1}, \ldots, p_0)\) and \((q_{n-1}, \ldots, q_0)\).

Table 1. \(p_i, q_i\) for binary format, 24 bit precision; \(k \equiv 2\)

In the columns of the table the condition number is given followed by the coefficients \(p_i\) and \(q_i\), both in descending order. The coefficients are given by two numbers \(m\) and \(e\) such that \(m \cdot 2^e\) is the actual coefficient. E.g. \(q_4 = 1175 \cdot 2^{22}\) for \(n = 5\) (yielding a \(10 \times 10\)-matrix). Especially for this \(10 \times 10\)-matrix our algorithm yields a higher condition than the expected maximum \(4 \cdot 2^{24.2n} \approx 7 \cdot 10^{72}\).
For double precision we choose different values for k yielding the following coefficients:

$$\begin{bmatrix}
3527199 \cdot 2^3 & 6746489 \cdot 2^1 & -8816797 \cdot 2^0 & 1247053 \cdot 2^5 & 13508351 \cdot 2^3 & -14061827 \cdot 2^2 \\
1247053 \cdot 2^4 & 13508351 \cdot 2^2 & -140061827 \cdot 2^1 & 3527199 \cdot 2^3 & 6746489 \cdot 2^1 & -8816797 \cdot 2^0 \\
1 & -2^{24} & 1 & -2^{24} & 1 & -2^{24}
\end{bmatrix}$$

To generate this matrix the values $P = 7942546277405390632803$ and $Q = 5616228332641321147898$ have been used.

MATLAB [2] delivers as an estimation for the condition number of the matrix the (almost) correct answer ∞.
References

