Gegenstromtrennung von schwerflüchtigen Naturstoffen mit überkritischen komprimierten Gasen unter Verwendung von Schleppmitteln

Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation

von
Martin Jungfer
aus Bonn

2000
1. Gutachter: Prof. Dr.-Ing. G. Brunner
2. Gutachter: Prof. Dr.-Ing. G. Gruhn

Tag der mündlichen Prüfung: 06.07.2000
Vorwort

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. G. Brunner für die interessante und herausfordernde Themenstellung, für die wissenschaftliche Betreuung und für die stete Unterstützung in allen Belangen.

Herrn Prof. Dr.-Ing. G. Gruhn danke ich für die freundliche Übernahme des Koreferates sowie Herrn Prof. Dr. rer. nat. G. Antranikian für den Vorsitz im Prüfungsausschuss.

Bei der Firma Hoffmann-La Roche bin ich insbesondere den Herren Dr. K. Steiner und Dr. R. Karge verbunden und danke für die finanzielle und fachliche Unterstützung.

Mein herzlichster Dank gilt meinen Eltern, die mir meine Ausbildung ermöglichten, mich immer förderten und die durch Ihre Unterstützung und Aufmunterung in guten und schwierigen Zeiten zum Erfolg dieser Arbeit beigetragen haben.

Hamburg, im Juli 2000

Martin Jungfer
Inhaltsverzeichnis

Inhaltsverzeichnis... I
Symbolverzeichnis... IV
Zusammenfassung .. VII

1 Einführung und Zielsetzung.. 1
 1.1 Überkritische Fluide und deren Anwendung ... 1
 1.2 Zielsetzung der Arbeit.. 5
 1.3 Vorgehensweise ... 6

2 Verwendete Stoffe .. 8
 2.1 Eingesetztes Versuchsmaterial... 8
 2.1.1 Rohes Palmöl.. 8
 2.1.2 Biodiesel... 15
 2.1.3 Rohtocopherol .. 16
 2.1.4 CO₂ als Lösemittel ... 17
 2.2 Schlüsselkomponenten... 17
 2.2.1 Tocochromanole... 17
 2.2.2 β-Carotin ... 20
 2.2.3 Fettsäureester.. 23

3 Analytik.. 25
 3.1 GC-Analyse.. 25
 3.2 HPLC-Analyse ... 27
 3.3 Spektrophotometrische Analyse... 28

4 Phasengleichgewichte... 29
 4.1 Theoretische Grundlagen... 29
 4.1.1 Thermodynamische Grundlagen ... 29
 4.1.1.1 Phasengleichgewichte binärer Stoffsysteme... 30
 4.1.1.2 Phasengleichgewichte ternärer Systeme .. 32
 4.1.1.3 Die Wirkungsweise von Schleppmitteln.. 33
 4.1.1.4 Allgemeines über Zustandsgleichungen... 34
Inhaltsverzeichnis

4.1.2 Auswahl und Beschreibung der verwendeten Modelle ... 36
 4.1.2.1 Von ASPEN PLUS verwendete Gleichungen .. 36
 4.1.2.2 Von PE verwendete Gleichungen .. 39
 4.1.2.3 Verwendete Größen zur Benutzung von Berechnungsmethoden 39
4.1.3 Messmethode ... 40
4.1.4 Auswertung von Phasengleichgewichtsmessungen ... 40

4.2 Phasengleichgewichtsmessungen ... 44
 4.2.1 Aufbau der Phasengleichgewichtsapparatur ... 44
 4.2.2 Durchführung von Phasengleichgewichtsmessungen .. 47
 4.2.3 Versuchsprogramm der Phasengleichgewichtsmessungen 48

4.3 Experimentelle Ergebnisse der Phasengleichgewichtsmessungen 49
 4.3.1 Rohes Palmöl mit CO₂ ... 49
 4.3.1.1 Binäre Löslichkeit .. 49
 4.3.1.2 Mehrkomponentenbetrachtung .. 51
 4.3.2 Rohes Palmöl und Ethylester als Schleppmittel mit CO₂ 58
 4.3.2.1 Binäre Löslichkeit .. 58
 4.3.2.2 Mehrkomponentenbetrachtung .. 59
 4.3.3 Fettsäuremethylester und β-Carotin mit CO₂ .. 63
 4.3.3.1 Binäre Löslichkeit .. 64
 4.3.3.2 Mehrkomponentenbetrachtung .. 66
 4.3.4 Rohtocopherol mit CO₂ .. 70
 4.3.4.1 Binäre Löslichkeit .. 70
 4.3.4.2 Mehrkomponentenbetrachtung .. 71
 4.3.4.3 Adsorptive Reinigung von Rohtocopherol mit Silica 74

4.4 Korrelierung der Phasengleichgewichte ... 76
 4.4.1 Verwendung von ASPEN PLUS .. 76
 4.4.1.1 Bestimmung fehlender Stoffdaten .. 76
 4.4.1.2 Regression von Parametern .. 79
 4.4.1.3 Simulation der Phasengleichgewichte ... 81
 4.4.2 Verwendung von PE .. 84
 4.4.3 Korrelierung mittels empirischer Gleichungen ... 88
 4.4.3.1 Korrelierung des Trennfaktors ... 89
 4.4.3.2 Korrelierung der Beladungen .. 89
5 Gegenstromtrennung mit überkritischen Fluiden .. 91
 5.1 Theoretische Grundlagen .. 91
 5.1.1 Entwicklung der Gegenstrom-SFE ... 91
 5.1.1.1 Prozessführung ... 95
 5.1.1.2 Hydrodynamik und wirtschaftliche Aspekte ... 97
 5.1.2 Bilanzierung einer Gegenstromtrennkolonne ... 98
 5.1.3 Das Konzept der theoretischen Trennstufe .. 102
 5.1.3.1 McCabe-Thiele-Methode ... 102
 5.1.3.2 Konstruktion im Gibbs’schen Dreiecksdiagramm 106
 5.1.3.3 Konstruktion im Jänecke-Diagramm ... 107
 5.1.3.4 Simulation mit ASPEN PLUS .. 108
 5.1.4 Konzept der kontinuierlichen Konzentrationsänderung 109
 5.1.5 Fluidodynamik .. 109
 5.2 Trenntechnische Analyse zur Festlegung des Versuchsprogramms 111
 5.2.1 Trenntechnische Analyse zur Fraktionierung von rohem Palmöl 111
 5.2.2 Trenntechnische Analyse zur Anreicherung von β-Carotin 115
 5.3 Beschreibung der Extraktionsapparaturen ... 116
 5.3.1 SFE-Kolonne .. 117
 5.3.1.1 Aufbau der SFE-Kolonne ... 117
 5.3.1.2 Durchführung von Gegenstromtrennexperimenten mit der SFE-Kolonne .. 119
 5.3.2 Mixer-Settler-Apparatur .. 120
 5.3.2.1 Aufbau der Mixer-Settler-Apparatur ... 120
 5.3.2.2 Durchführung von Trennexperimenten mit der Mixer-Settler-Apparatur ... 123
 5.4 Experimentelle Ergebnisse der Trennversuche .. 124
 5.4.1 Kolonnenversuche .. 125
 5.4.2 Alkoholyse des mittels SFE raffinierten Palmöles .. 129
 5.4.3 Trennung von rohem Palmöl in der Mixer-Settler-Apparatur 130
 5.5 Ergebnis, trenntechnische Analyse und Bewertung der Trennung 131
 5.5.1 Auftrennung von rohem Palmöl ... 131
 5.5.2 Fraktionierung von Fettsäuremethylestern und β-Carotin 133
 5.5.3 Reinigung von Rohtocopherol ... 134

Anhang ... 136

Literaturverzeichnis ... 139
Symbolverzeichnis

Lateinische Symbole: Einheit

A: Peakfläche im Chromatogramm Fl%

a_1 ... a_3: Korrelationsparameter für Trennfaktor -

a: Parameter in Zustandsgleichungen kJ · m³ / kmol²

b: Parameter in Zustandsgleichungen m³ / kmol

c: Konzentration mg / ml

c_v: spezifische Wärmekapazität bei konstantem Volumen kJ / (kg · K)

D: Diffusionskoeffizient m² / s

d_{(Kolonne)}: Innendurchmesser der Kolonne m

e_1 ... e_4: Korrelationsparameter für Beladung der Gasphase -

f: Responsefaktor -

F': Kapazitätsfaktor m / s

K: Verteilungskoeffizient -

K': lösemittelfreier Verteilungskoeffizient -

k_{a,i,j}, k_{b,ij}: Wechselwirkungsparameter für Mischungsregeln -

k_{a,i,j}^0, k_{b,ij}^0: Parameter in Redlich-Kwong-ASPEN-Zustandsgleichung -

k_{a,i,j}^1, k_{b,ij}^1: Parameter in Redlich-Kwong-ASPEN-Zustandsgleichung K⁻¹

k_{ij}^{MKP}: Parameter in Mathias-Klotz-Prausnitz-Mischungsregel -

l_{ij}: Wechselwirkungsparameter für Mischungsregeln -

\dot{m}: Massenstrom kg / s

m_i: Reinstoffgröße in Zustandsgleichung -

m: Masse kg

N_E, N_R: Beladungen im Jänecke-Diagramm kg / kg

n_{th}: Anzahl der theoretischen Trennstufen -

P: Druck MPa

R: allgemeine Gaskonstante; 8,314 kJ / (kmol · K)

r_1, r_2: Korrelationsparameter für Beladung der Flüssigphase -

S: Entropie kJ / K

T: Temperatur K
Lateinische Symbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>innere Energie</td>
<td>kJ / kg</td>
</tr>
<tr>
<td>u_v</td>
<td>Leerrohrgeschwindigkeit</td>
<td>m / s</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
<td>m³</td>
</tr>
<tr>
<td>v</td>
<td>Molares Volumen</td>
<td>m³ / kmol</td>
</tr>
<tr>
<td>x</td>
<td>Anteil in der Flüssigphase</td>
<td>kg / kg</td>
</tr>
<tr>
<td>y</td>
<td>Anteil in der Gasphase</td>
<td>kg / kg</td>
</tr>
<tr>
<td>Z</td>
<td>Kompressibilitätsfaktor</td>
<td>-</td>
</tr>
<tr>
<td>z_i</td>
<td>Molanteil der Komponente i an der Gesamtmischung</td>
<td>mol / mol</td>
</tr>
</tbody>
</table>

Griechische Symbole:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_i</td>
<td>Temperaturfunktion in Zustandsgleichung</td>
<td>-</td>
</tr>
<tr>
<td>α_{ij}</td>
<td>Trennfaktor</td>
<td>-</td>
</tr>
<tr>
<td>$\overline{\alpha}_{ij}$</td>
<td>mittlerer Trennfaktor</td>
<td>-</td>
</tr>
<tr>
<td>λ_{ij}^{MKP}</td>
<td>Parameter in Mathias-Klotz-Prausnitz-Mischungsregel</td>
<td>-</td>
</tr>
<tr>
<td>η</td>
<td>Viskosität</td>
<td>kg / (m · s)</td>
</tr>
<tr>
<td>μ</td>
<td>chemisches Potential</td>
<td>kJ / kmol</td>
</tr>
<tr>
<td>ν</td>
<td>Rücklaufverhältnis</td>
<td>-</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
<td>kg / m³</td>
</tr>
<tr>
<td>ω</td>
<td>azentrischer Faktor</td>
<td>-</td>
</tr>
<tr>
<td>Ψ</td>
<td>Flussparameter</td>
<td>-</td>
</tr>
</tbody>
</table>

Tiefgestellte Indizes und verwendete Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>kritischer Wert</td>
</tr>
<tr>
<td>CPO</td>
<td>Crude Palm Oil (rohes Palmöl)</td>
</tr>
<tr>
<td>E</td>
<td>Extrakt</td>
</tr>
<tr>
<td>EOS</td>
<td>Equation of State (Zustandsgleichung)</td>
</tr>
<tr>
<td>F</td>
<td>Feed</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty Acid Methyl Esters (Fettsäuremethylester, Biodiesel)</td>
</tr>
<tr>
<td>FFA</td>
<td>Free Fatty Acid (freie Fettsäure)</td>
</tr>
</tbody>
</table>
Tiefgestellte Indizes und verwendete Abkürzungen (Fortsetzung)

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>HETS</td>
<td>Height Equivalent to a Theoretical Stage</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>i, j, n</td>
<td>Zählvariable</td>
</tr>
<tr>
<td>IStd</td>
<td>Interner Standard</td>
</tr>
<tr>
<td>Kopf</td>
<td>kennzeichnet Zustände am Kolonnenkopf</td>
</tr>
<tr>
<td>KP</td>
<td>kritischer Punkt</td>
</tr>
<tr>
<td>L</td>
<td>Kennzeichnung der Flüssigphase</td>
</tr>
<tr>
<td>LFK</td>
<td>leichtflüchtige Komponente des Ausgangsmaterials</td>
</tr>
<tr>
<td>LM</td>
<td>Lösemittel</td>
</tr>
<tr>
<td>LMV</td>
<td>Lösemittelverhältnis</td>
</tr>
<tr>
<td>PFAD</td>
<td>Palm Fatty Acid Distillate</td>
</tr>
<tr>
<td>Pol</td>
<td>Polpunkt</td>
</tr>
<tr>
<td>PR</td>
<td>Peng-Robinson-Zustandsgleichung</td>
</tr>
<tr>
<td>R</td>
<td>Raffinat</td>
</tr>
<tr>
<td>RKA</td>
<td>Redlich-Kwong-ASPEN-Zustandsgleichung</td>
</tr>
<tr>
<td>RKS</td>
<td>Redlich-Kwong-Soave-Zustandsgleichung</td>
</tr>
<tr>
<td>Rück</td>
<td>Rücklaufstrom</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical Fluid Extraction</td>
</tr>
<tr>
<td>SFM</td>
<td>schwerflüchtige Mischung (Ausgangsmaterial)</td>
</tr>
<tr>
<td>SFK</td>
<td>schwerflüchtige Komponente des Ausgangsmaterials</td>
</tr>
<tr>
<td>Sumpf</td>
<td>kennzeichnet Zustände am Kolonnensumpf</td>
</tr>
<tr>
<td>TP</td>
<td>Tripelpunkt</td>
</tr>
<tr>
<td>V</td>
<td>Kennzeichnung der Gasphase</td>
</tr>
</tbody>
</table>
Zusammenfassung

In dieser Arbeit wurden Untersuchungen zur Anreicherung von Vitaminen aus rohem Palmöl durchgeführt. Die im verwendeten Öl enthaltenen 300 ppm Tocochromanole (Vitamin E) und 400 ppm β-Carotin (Provitamin A) sollen durch Gegenstromextraktion mit überkritischem Kohlendioxid angereichert werden.

Diese Erkenntnis führte zur Entwicklung eines dreistufigen Prozesses zur Aufbereitung der im rohen Palmöl enthaltenen Vitamine. In einer ersten Trennstufe werden die freien Fettsäuren und Tocochromanole in einer Gegenstromextraktion mit überkritischem CO₂ abgetrennt. Zur Auslegung dieser Trennung wurden weitere Phasengleichgewichtsmessungen mit Mischungen durchgeführt, die reich an freien Fettsäuren und Tocochromanolen waren. Anschließend wurden Trennversuche in einer Gegenstromkolonne (17,5 mm Ø, 6 m Sulzer EX Packung) mit den in einer zuvor durchgeführten trenntechnischen Analyse als optimal bestimmten Prozessbedingungen bei 370 K und 30 MPa durchgeführt. Es gelang, eine
Entsäuerung des rohen Palmöles bis auf einen Restgehalt von 0,2 Ma% freie Fettsäuren im Raffinat bei gleichzeitiger Anreicherung der freien Fettsäuren (48 Ma%) und Tocochromanole (3 200 ppm) im Extrak. Die mittlere Anzahl der theoretischen Trennstufen lag bei 3,8, woraus sich bei der verwendeten Kolonne eine mittlere Stufenhöhe von 1,6 m ergibt. Die weitere Anreicherung von Vitamin E aus einer Mischung von Tocochromanolen und freien Fettsäuren wurde bereits in anderen Untersuchungen erfolgreich durchgeführt und deshalb hier nicht weiter bearbeitet.

Die in dieser Arbeit gemessenen Phasengleichgewichte wurden mit dem Prozess-Simulator ASPEN und dem im Arbeitsbereich intern entwickelten Programm Phase Equilibria (PE) korreliert. Dabei stellte sich heraus, dass die Verwendung von PE zu einer besseren Wiedergabe der Messergebnisse führt, ein Resultat, welches vor allem auf der breiteren Auswahl der zur Verfügung stehenden Mischungsregeln beruht.
1 Einführung und Zielsetzung

1.1 Überkritische Fluide und deren Anwendung

Ein Reinstoff kann die vier Aggregatzustände fest, flüssig, gasförmig und den des Plasmas annehmen. Im Bereich hoher Temperatur und hohen Druckes tritt ein weiterer Zustand auf, der jedoch kein Aggregatzustand im Sinne der Definition ist. Beim Überschreiten eines bestimmten Druckes und einer bestimmten Temperatur befindet sich ein Reinstoff im sogenannten überkritischen Zustand und wird als überkritisches Gas bezeichnet. Zur Veranschaulichung dieses Sachverhaltes ist das Phasenverhalten von CO₂ in dem in Bild 1 gezeigten P-T-Diagramm dargestellt. Das überkritische Gebiet schließt sich an die Dampfdruckkurve an, die sich vom Tripelpunkt TP bis zum kritischen Punkt KP erstreckt. Der kritische Punkt ist für einen Reinstoff durch seine kritische Temperatur T_C und seinen kritischen Druck P_C festgelegt, die im Fall von CO₂ $T_C = 304$ K bzw. $P_C = 7,38$ MPa betragen.

Beim Übergang in den überkritischen Zustand ändern sich die Stoffeigenschaften in der Regel kontinuierlich, nur wenn der kritische Punkt direkt durchschritten wird, treten sprungartige Änderungen auf. Im Dichte-Druck-Diagramm in Bild 2 wird die Unstetigkeit durch eine vertikale Tangente der kritischen Isothermen im kritischen Punkt KP deutlich. Dort bewirkt eine beliebig kleine Druckänderung eine sehr große Änderung der Dichte (unendliche Kompressibilität).

Tabelle 1: Vergleich von Stoffeigenschaften bei verschiedenen Zuständen nach Knez [58]

<table>
<thead>
<tr>
<th></th>
<th>Gas 0,1 MPa; 298 K</th>
<th>überkritisches Fluid $P_C; T_C$</th>
<th>Flüssigkeit 0,1 MPa; 288 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ / (kg/m³)</td>
<td>1</td>
<td>200..500</td>
<td>1 000</td>
</tr>
<tr>
<td>η / (kg/(m·s))</td>
<td>10^{-5}</td>
<td>$1.3 \cdot 10^{-5}$</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>D / (m²/s)</td>
<td>10^{-5}</td>
<td>$0.7 \cdot 10^{-7}$</td>
<td>10^{-9}</td>
</tr>
</tbody>
</table>

Das Spektrum der Anwendung überkritischer Fluide erstreckt sich über chemische Reaktionen, Extraktion (Supercritical Fluid Extraction, SFE), Kristallisation, die Herstellung feiner Partikeln und das Färben von Textilien mit dispersen Farbstoffen (Supercritical Fluid Dyeing, SFD) [102] bis hin zur Analytik mittels SFC (Supercritical Fluid Chromatography). Die Verwendung verdichteter Gase wird vor allem wegen der Forderung nach umweltverträglichen und leicht regenerierbaren Lösemitteln untersucht, die darüber hinaus rückstandslos aus den Produkten entfernt werden können. Im Folgenden wird auf das Trennverfahren der Gasextraktion näher eingegangen, welches aus den später in Tabelle 2 genannten Gründen eine der häufigsten Anwendungen von überkritischen Fluiden darstellt.

Entlang der kritischen Isothermen ist im Druckbereich zwischen 5 und 10 MPa eine starke Dichteänderung zu erkennen, ohne dass dabei ein Phasenübergang stattfindet. Wie diese Eigenschaft für ein Trennverfahren technisch nutzbar gemacht werden kann, wird in Kapitel 5.1.1 eingehend erläutert.
Extraktion mit überkritischen Gasen

Bild 3: Einteilung von Trennverfahren hinsichtlich des thermodynamischen Zustands des Hilfsstoffes

In diesen Untersuchungen wird ausschließlich Kohlendioxid als Lösemittel verwendet. CO₂ besitzt gegenüber organischen Lösemitteln oder anderen überkritischen Fluiden vielerlei Vorteile, die in Tabelle 2 gemeinsam mit dessen Nachteilen zusammengefasst sind.

Tabelle 2: Vor- und Nachteile der Verwendung von CO₂ als überkritisches Lösemittel

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ kostengünstig</td>
<td>- Hochdruckverfahren erforderlich</td>
</tr>
<tr>
<td>+ nicht brennbar</td>
<td>- kompliziertes Phasenverhalten</td>
</tr>
<tr>
<td>+ ungiftig</td>
<td>- wenig Stoffdaten</td>
</tr>
<tr>
<td>+ nicht kennzeichnungspflichtig</td>
<td>- geringe Kapazität</td>
</tr>
<tr>
<td>+ geringe Prozesstemperature</td>
<td></td>
</tr>
<tr>
<td>+ geringe Viskosität</td>
<td></td>
</tr>
<tr>
<td>+ hoher Diffusionskoeffizient</td>
<td></td>
</tr>
<tr>
<td>+ 2-Phasengebiet immer erreichbar</td>
<td></td>
</tr>
<tr>
<td>+ vollständige Lösemittelabtrennung</td>
<td></td>
</tr>
</tbody>
</table>

Industrielle Anwendung findet die Gasextraktion bislang in der Erdölverarbeitung (ROSE-Prozess), der Entkoffeinierung von Kaffee und Tee, der Gewürz- und Aromaextraktion sowie der Herstellung von Hopfenextrakten [81] und ω-3-Fettsäuren.

1.2 Zielsetzung der Arbeit

Unabhängig von der Schleppmittelwirkung der Ester auf das β-Carotin stellt sich nachfolgend die Frage nach der Abtrennung von β-Carotin aus Fettsäureestern. Letztere

Die Motivation zur Gewinnung von Vitaminen aus natürlichen Quellen ist ihre physiologisch besonders wertvolle Zusammensetzung. Während α-Tocopherol in der Natur nur in der einen Form vorkommt, die eine 100 %-ige Vitamin E-Aktivität aufweist, besteht synthetisches α-Tocopherol aus 8 Enantiomeren, die in ihrer Gesamtheit eine deutlich geringere Aktivität von lediglich 74 % besitzen. Die Trennung der zu 8 gleichen Teilen auftretenden Enantiomere ist derart aufwendig, dass zur Herstellung des α-Tocopherols, welches als einziges eine 100 %-ige Vitamin E-Aktivität besitzt, natürliche Quellen die erste Wahl sind.

1.3 Vorgehensweise

In Bild 4 ist die Vorgehensweise zur Auslegung einer mehrstufigen Gegenstromextraktion schematisch dargestellt. Zu Beginn der Untersuchungen steht dieMessung von Phasengleichgewichten des Ausgangsmaterials mit dem gewünschten überkritischen Lösemittel für verschiedene Drücke und Temperaturen. Auf der Basis dieser Phasengleichgewichte werden in einer trenntechnischen Analyse unter Vorgabe von Randbedingungen viele der zur Trennung relevanten Parameter berechnet, ohne dass zuvor ein Trennversuch durchgeführt werden muss. Beispielsweise lässt sich für eine definierte Zusammensetzung von Ausgangsmaterial und Produkt die Anzahl der theoretischen Trennstufen n_{th} und das Lösemittelverhältnis \(\frac{\bar{m}_{LM}}{\bar{m}_T} \) nach verschiedenen Verfahren berechnen. In 5.1.3 werden die analytischen Auslegungsverfahren von McCabe-Thiele und Jänecke sowie ein weiteres numerisches Verfahren ausführlich erläutert.
Die trenntechnische Analyse dient der Planung von Trennexperimenten. Mit den Trennexperimenten wird die Höhe einer theoretischen Trennstufe für die ausgewählte Trennvorrichtung (Height Equivalent to a Theoretical Stage, HETS) ermittelt und die praktische Durchführung der theoretischen Berechnungen überprüft. Mit dem HETS-Wert lässt sich die zu erwartende Gesamthöhe der Trennkolonne berechnen. Ferner wird in den Trennexperimenten neues Ausgangsmaterial für weitere Phasengleichgewichtsmessungen produziert, wodurch konzentrationsabhängige Trennfaktoren bestimmt werden können.

Ergänzend kann in hydrodynamischen Untersuchungen die Belastbarkeit der Kolonne (Flutpunkte, Druckverlust) ermittelt werden. In Abhängigkeit vom Durchsatz resultiert daraus der erforderliche Kolonnendurchmesser. Bei Schwerkraft-Gegenstromprozessen ist es hydrodynamisch notwendig, zwecks Phasentrennung innerhalb der Kolonne eine ausreichende Dichtedifferenz zwischen den beiden Phasen aufrecht zu erhalten. Es kann der Fall eintreten, dass die in der trenntechnischen Analyse ermittelten Werte bezüglich optimalen Druckes und optimaler Temperatur durch die Ergebnisse der Belastungsexperimente korrigiert werden müssen, um einen in jeder Hinsicht akzeptablen Durchsatz ohne Fluten zu erhalten.
2 Verwendete Stoffe

In diesem Kapitel wird kurz auf die verwendeten Stoffe eingegangen. Zuerst erfolgt eine allgemeine Beschreibung der eingesetzten Versuchsmaterialien, und anschließend werden die darin enthaltenen Haupt- und Schlüsselkomponenten genauer beschrieben.

2.1 Eingesetztes Versuchsmaterial

2.1.1 Rohes Palmöl

Vorkommen

Seit über 5 000 Jahren macht sich der Mensch Palmöl zu Nutze. Rohes Palmöl (Crude Palm Oil, CPO) wird aus der Frucht der Ölpalme (Elaeis guineensis) gewonnen, die ursprünglich aus West Guinea stammt und heute rund um den Äquator und vor allem in Malaysia angebaut wird. Palmfrüchte wachsen in 30 bis 40 cm großen, von 4 bis 20 kg schweren Dolden. Die 200 bis 2 000 Einzelfrüchte sind etwa 2 bis 3 cm lang.

Herstellung und Verarbeitung von Palmöl

In Bild 5 sind Daten über die Jahresproduktionen (obere Skala) und der Flächenausbeuten (untere Skala) der wichtigsten Öle aus verschiedenen Ölplänen dargestellt [77]. Der hohe Stellenwert des Palmöls wird sowohl an seiner Gesamtmenge als auch an der extrem hohen Flächenausbeute deutlich.

Wegen der Zusammensetzung seiner Glyceride kann rohes Palmöl relativ leicht in die zwei Fraktionen Stearin- und Olein-Phase getrennt werden. Durch langsames Abkühlen kommt es zum Auskristallisieren der Stearin-Phase, deren Schmelzpunkt (slip melting point) sich zwischen 318 und 329 K bewegt [134]. Die Bezeichnung „Stearin-Phase“ ist nur mit Einschränkung richtig, denn beide Fraktionen besitzen den gleichen Stearinsäuregehalt von 4 bis 5 %. Als Bezeichnung wäre „Palmitin-Phase“ passender, denn mit 47 bis 74 % dominiert der Gehalt an Palmitinsäure. Ölsäure ist mit 16 bis 37 % am zweitstärksten vertreten. Die Olein-Phase enthält 41 bis 44 % Ölsäure und 38 bis 42 % Palmitinsäure.
Ihr Schmelzpunkt liegt mit 293 bis 297 K deutlich unter dem der Palmitin-Phase. Die Trennung mittels Kristallisation kann vor oder nach der Raffination durchgeführt werden.

Verwendung

durch eine Veresterung des rohen Palmöls mit Methanol zu Methylestern und Glycerin. Anschließend werden die Wertstoffe mittels Kurzwegdestillation angereichert.

Zusammensetzung

Frisches Palmöl besteht nahezu vollständig aus Triglyceriden, einem kleinen Anteil freier Fettsäuren und Spurenstoffen, wie Tocochromanolen und β-Carotin, die hier weiter untersucht werden sollen. Das verwendete Palmöl\(^1\) enthält 4,6 Ma% freie Fettsäuren, 300 ppm Tocochromanole und 400 ppm β-Carotin. Der verbleibende Rest besteht größtenteils aus unterschiedlichen gemischten Triglyceriden.

Diese Triglyceride lassen sich durch die Anzahl der Kohlenstoffatome ihrer Fettsäuren charakterisieren, wobei der Summenparameter Kohlenstoffanzahl keine eindeutige Aussage über ein Triglycerid erlaubt, weil Informationen über den Sättigungsgrad, das heißt seine Doppelbindungen, fehlen. Die in Tabelle 3 dargestellten Untersuchungen von Tan und Oh [134] zeigen, welche Kombinationen von Fettsäuren sich im Fall von CPO hinter den Kohlenstoffzahlen verbergen. In der rechten Spalte sind die Zusammensetzungen der entsprechenden Triglyceride in Reihenfolge ihrer Häufigkeit aufgelistet. Dabei werden die vier am häufigsten vorkommenden Fettsäuren Palmitinsäure (P=C16:0), Ölsäure (O=C18:1), Linolsäure (L=C18:2) und Stearinsäure (S=C18:0) berücksichtigt. Weitere Ergebnisse zeigen, dass die Verteilung der Fettsäuren auf die Kohlenstoffatome des Glycerins nicht zufällig erfolgt. Von den Fettsäuren, die mit dem mittleren Kohlenstoffatom des Glycerins die Esterbindung eingehen, sind über 85 % ungesättigt.

<table>
<thead>
<tr>
<th>C-Atome / Anzahl</th>
<th>Anteil / Mol%</th>
<th>Zusammensetzung / -</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>0,4 – 1,2</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>4,7-10,8</td>
<td>PPP</td>
</tr>
<tr>
<td>50</td>
<td>40,0-45,2</td>
<td>PPO, PPL, PPS</td>
</tr>
<tr>
<td>52</td>
<td>38,2-43,8</td>
<td>POO, PLO, POS</td>
</tr>
<tr>
<td>54</td>
<td>6,4-11,4</td>
<td>OOO, OOL</td>
</tr>
</tbody>
</table>

\(^1\) Deutsche Cargill GmbH Öl- und Fettveredlung, Hamburg

Tabelle 4: Freie Fettsäuren (‰ FFA) im Palmöl

<table>
<thead>
<tr>
<th>Fettsäure</th>
<th>Eigenes 1997/1999</th>
<th>[28]</th>
<th>[134]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td>0,2 / 0,2</td>
<td>-</td>
<td>0,0..1,0</td>
</tr>
<tr>
<td>C14:0</td>
<td>0,9 / 1,0</td>
<td>0,5..5,9</td>
<td>0,6..1,7</td>
</tr>
<tr>
<td>C16:0</td>
<td>44,6 / 44,2</td>
<td>32..47</td>
<td>41,1..47,0</td>
</tr>
<tr>
<td>C16:1</td>
<td>0,2 / 0,1</td>
<td>-</td>
<td>0,0..0,6</td>
</tr>
<tr>
<td>C18:0</td>
<td>4,3 / 4,0</td>
<td>2,8</td>
<td>3,7..5,6</td>
</tr>
<tr>
<td>C18:1</td>
<td>38,7 / 39,9</td>
<td>40..52</td>
<td>37,3..43,5</td>
</tr>
<tr>
<td>C18:2</td>
<td>10,2 / 9,3</td>
<td>5..11</td>
<td>6,6..11,9</td>
</tr>
<tr>
<td>C18:3</td>
<td>0,2 / 0,3</td>
<td>-</td>
<td>0,0..0,6</td>
</tr>
<tr>
<td>C20:0</td>
<td>0,4 / 0,4</td>
<td>-</td>
<td>0,0..0,8</td>
</tr>
<tr>
<td>C20:1</td>
<td>0,1 / 0,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C22:0</td>
<td>0,1 / 0,1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Generell setzen sich die Triglyceride des rohen Palmöls aus den in Tabelle 4 aufgelisteten Fettsäuren zusammen. Wie dort zu entnehmen ist, besitzt der Anteil an freien Fettsäuren eine recht große Schwankungsbreite. Das ist bei malaysianischem Öl nicht der Fall, weil nach Maclellan [76] sämtliche Palmpflanzen von vier Samen abstammen, die Anfang dieses Jahrhunderts nach Malaysia gebracht wurden.
Daneben enthält Palmöl noch einen Teil unverseifbarer Substanzen, der nach Cornelius [28] und Tan und Oh [134] mit 0,2 bis 1,0 Ma% gering ausfällt. Die Komponenten, die den unverseifbaren Anteil des Palmöls ausmachen, liegen zwar jeweils nur mit einigen hundert ppm vor, ihr Einfluss auf Stoffeigenschaften wie Farbe und Oxidationsbeständigkeit ist jedoch beträchtlich. Eine qualitative Zusammenstellung des unverseifbaren Anteils liefert Tabelle 5.

Tabelle 5: Zusammensetzung des unverseifbaren Anteils von rohem Palmöl

<table>
<thead>
<tr>
<th></th>
<th>ppm</th>
<th>ppm</th>
<th>ppm</th>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotinoide</td>
<td>500-800 [134]</td>
<td>600-1 000 [134]</td>
<td>300 [28]</td>
<td>500-1 000 [28]</td>
<td>ca. 800 [28]</td>
</tr>
<tr>
<td>Tocochromanole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphatide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkohole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Spektrum der in CPO enthaltenen Carotinoide ist sehr groß. Wie Tan et al. [133] berichten, beträgt der Anteil an β-Carotin über 90 %, weshalb es in unseren Untersuchungen besondere Beachtung findet. Im Folgenden steht die Bezeichnung β-Carotin stellvertretend für alle im CPO enthaltenen Carotinoide.

Schmelzeigenschaften

2.1.2 Biodiesel

Einige der im Rahmen dieser Arbeit durchgeführten Untersuchungen beschäftigen sich mit der Abtrennung von β-Carotin aus Biodiesel (Lieferung der Ölmühle Connemann, Leer), der sich aus verschiedenen Fettsäuremethylestern (Fatty Acid Methyl Esters, FAME) zusammensetzt. Die Fettsäurezusammensetzung von Rapsöl und Rapsölmethylester nach Mittelbach et al. [86] wird in Bild 8 mit der des Biodiesels verglichen. Wie zu erkennen ist, erhält die Verteilung der Fettsäuren durch die Umesterung und anschließende Reinigung keine nennenswerte Veränderung, und die Zusammensetzung ist über die Jahre konstant geblieben.
2.1.3 Rohtocopherol

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Molmasse / (kg / kmol)</th>
<th>Anteil / Ma%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{18})-Keton</td>
<td>268</td>
<td>0,6</td>
</tr>
<tr>
<td>Phytene</td>
<td>280</td>
<td>1,0</td>
</tr>
<tr>
<td>Phytadiene</td>
<td>278</td>
<td>0,6</td>
</tr>
<tr>
<td>(\alpha)-Tocopherol</td>
<td>431</td>
<td>94,0</td>
</tr>
<tr>
<td>Andere Tocopherole</td>
<td>397 - 425</td>
<td>2,0</td>
</tr>
<tr>
<td>Phytyl-(\alpha)-Tocopherol</td>
<td>708</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) Ronotec 201 der Firma F. Hoffmann-La Roche
2.1.4 CO₂ als Lösemittel

Das von der Firma Carbo Kohlensäurewerke GmbH & Co. KG, Bad Hönningen, bezogene und für die Untersuchungen eingesetzte Kohlendioxid besitzt eine Reinheit von 99,95 %. Zur Minimierung des im CO₂ enthaltenen Sauerstoffes durchläuft das Gas vor seiner Verwendung einen Aktivkohlefilter oder ein anderes Adsorptionsmittel.

2.2 Schlüsselkomponenten

Auf die oben nur kurz erwähnten Komponenten Tocochromanole, β-Carotin und Fettsäureester wird in den folgenden Abschnitten näher eingegangen.

2.2.1 Tocochromanole

In Abhängigkeit vom Sättigungsgrad der Seitenkette und dem Methylierungsgrad am aromatischen Kern findet eine Unterteilung in 8 Tocochromanole statt, von denen einige untereinander Isomere sind. Ist die Seitenkette gesättigt, so werden die Stoffe als Tocopherole bezeichnet, liegt zwischen den in Bild 11 hervorgehobenen Kohlenstoffatomen 3'-4', 7'-8', 11'-12' der Seitenkette jeweils eine Doppelbindung vor, als Tocotrienole.

Bild 11: Allgemeine Strukturformel der Tocochromanole

1 daher werden Tocopherol enthaltende Waren mit Stickstoff begast und im Kühlschrank unter Lichtabschluss gelagert

Tabelle 7: Tocochromanole

<table>
<thead>
<tr>
<th>Tocochromanol</th>
<th>R₁</th>
<th>R₂</th>
<th>Molmasse / (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α− Tocopherol</td>
<td>CH₃</td>
<td>CH₃</td>
<td>430,7</td>
</tr>
<tr>
<td>α− Tocotrienol</td>
<td>CH₃</td>
<td>CH₃</td>
<td>424,7</td>
</tr>
<tr>
<td>β− Tocopherol</td>
<td>CH₃</td>
<td>H</td>
<td>416,7</td>
</tr>
<tr>
<td>β− Tocotrienol</td>
<td>CH₃</td>
<td>H</td>
<td>410,7</td>
</tr>
<tr>
<td>γ− Tocopherol</td>
<td>H</td>
<td>CH₃</td>
<td>416,7</td>
</tr>
<tr>
<td>γ− Tocotrienol</td>
<td>H</td>
<td>CH₃</td>
<td>410,7</td>
</tr>
<tr>
<td>δ− Tocopherol</td>
<td>H</td>
<td>H</td>
<td>402,7</td>
</tr>
<tr>
<td>δ− Tocotrienol</td>
<td>H</td>
<td>H</td>
<td>396,7</td>
</tr>
</tbody>
</table>

Bild 12: Vitamin-E-Aktivitäten
Von Gapor et al. [40] wurden die Auswirkungen der Raffination von Palmöl auf seinen Tocochromanolgehalt untersucht. Es wurde festgestellt, dass der Verlust bis zu 71% beträgt. Genauere Untersuchungen zeigen in Tabelle 8, dass der Verlust für die verschiedenen Tocochromanole hohe Differenzen aufweist [57]. Besonders γ-Tocotrienol scheint während der Aufbereitung die Hauptbelastung der Oxidation zu tragen.

Tabelle 8: Veränderung des Tocochromanolgehalts während der Raffination

<table>
<thead>
<tr>
<th>Tocochromanol</th>
<th>Rohöl</th>
<th>Raffinat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Durchschnitt / ppm</td>
<td>Bereich / ppm</td>
</tr>
<tr>
<td>α−Tocopherol</td>
<td>120</td>
<td>60-200</td>
</tr>
<tr>
<td>α−Tocotrienol</td>
<td>110</td>
<td>60-200</td>
</tr>
<tr>
<td>β−Tocopherol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β−Tocotrienol</td>
<td>20</td>
<td>5-30</td>
</tr>
<tr>
<td>γ−Tocopherol</td>
<td>15</td>
<td>10-30</td>
</tr>
<tr>
<td>γ−Tocotrienol</td>
<td>290</td>
<td>150-400</td>
</tr>
<tr>
<td>δ−Tocopherol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>δ−Tocotrienol</td>
<td>50</td>
<td>10-100</td>
</tr>
<tr>
<td>Summe</td>
<td>605</td>
<td>-</td>
</tr>
</tbody>
</table>

Aus einer zwölfjährigen Studie an 18 000 Personen entnehmen Melchert und Pabel [84], dass eine Tagesdosis von über 50 mg α-Tocopherol zu einer starken Reduzierung von β- und γ-Tocopherol im Körper der Testpersonen führt. Dieser Effekt tritt nur bei reinem RRR-α-Tocopherol auf. Darum ist der Konsum von einem natürlichen Tocopherolgemisch zu bevorzugen.

Walter [144] führte Untersuchungen zur Aufnahme der empfohlenen Tagesdosis von 30 mg α-Tocopherol-Äquivalent durch. Er gelangt zum Ergebnis, dass diese zur Prävention notwendige, relativ hohe Dosis nur durch die vermehrte Einnahme von tocopherolreichen Speisefetten zu decken sei, was aus ernährungspysiologischen Gründen jedoch nicht empfehlenswert ist. Als mögliche Lösung wird auf den Konsum von mit Vitamin E angereicherten Nahrungsmitteln hingewiesen.
2.2.2 β-Carotin

Vitamin A hat einen bedeutenden Einfluss auf die Sehkraft und insbesondere eine positive Wirkung auf das Nachtsichtvermögen. Eine Unterversorgung kann zur Nachtblindheit und ein akuter Mangel, wie er bei Kleinkindern in Entwicklungsländern häufig auftritt, auch zur vollkommenen Blindheit führen. Es wird geschätzt, dass zur Zeit etwa drei Millionen Kinder aus diesem Grund blind sind.

β-Carotin und anderen Carotinoiden werden außerdem eine vorbeugende Wirkung gegen Krebs bescheinigt [89]. Des Weiteren soll es auch vorbeugend gegen Arteriosklerose wirken. Wichtig scheint hierbei vor allem die biologische Verfügbarkeit, die Zusammensetzung und die Dosierung zu sein. So hat sich gezeigt [94], dass β-Carotin aus Palmöl leichter aufgenommen werden kann als jenes in üblicher Nahrung wie Gemüse, da die Pflanzenstruktur das β-Carotin relativ fest einbindet und so die Aufnahme durch den Organismus behindert. Verschiedene Studien, die sich mit der Krebsvorbeugung durch β-Carotin beschäftigen, kamen zu unterschiedlichen Ergebnissen [94]. Der Grund hierfür liegt zum großen Teil in der Dosierung des β-Carotins. In Studien mit einer sehr hohen Vitamindosierung wurde keine oder sogar eine negative gesundheitliche Wirkung festgestellt. Eine prophylaktische Wirkung gegen Krebs konnte nur bei Studien mit geringen

Patente / Untersuchungen zur Anreicherung von Carotinoiden aus natürlichen Quellen

Anreicherung durch Veresterung der Triglyceride

Anreicherung durch Verseifung

Anreicherung durch Extraktion mit überkritischen Fluiden

Anreicherung durch Adsorption an Aktivkohle

Anreicherung durch Kristallisation

Herstellung mittels Fermentation

2.2.3 Fettsäureester

Die dritte Schlüsselkomponente sind Fettsäureester, die in diesen Untersuchungen als Ethyl- und Methylester zum Einsatz kommen. Zum einen wird eine Mischung aus Ethylpalmitat\(^1\) und -oleat\(^2\) als Schleppmittel für Phasengleichgewichtsversuche mit rohem Palmöl verwendet. Dabei werden Ester derart zusammengemischt, dass sie mit 54 Ma% Ethylpalmitat und 46 Ma% Ethyloleat hinsichtlich ihrer Fettsäurezusammensetzung dem

\(^1\) Ethylpalmitat (> 97 %), Lancaster, Chargen-Nr. 00044542

\(^2\) Ethyloleat (70 %, Rest ähnliche Ester), Sigma-Aldrich, Lot 18138-057
verwendeten, rohem Palmöl entsprechen1. Des Weiteren werden Methylester (Biodiesel2) als Modellsubstanz verwendet, um die Abtrennung von β-Carotin aus diesen Estern zu untersuchen. Genauere Angaben zur Fettsäurezusammensetzung aus Biodiesel befinden sich in Bild 8.

Bei Raumtemperatur sind die verwendeten Methyl- und Ethylester ölige, klare Flüssigkeiten. Verwendung finden sie vor allem in der kosmetischen und pharmazeutischen Industrie als Bestandteil von Cremes, Salben sowie Haut- und Haarölen [89].

1 normiert ausschließlich für Palmitin- und Ölsäure
2 Ölmühle Connemann, Leer
3 Analytik

3.1 GC-Analyse

Quantitative Auswertung

Die mittels Integrator ermittelte Fläche unter einem Peak ist proportional zur Konzentration des Analyten. Zur Umrechnung der Peakfläche \(A_i \) in die Konzentration \(c_i \) des Analyten ist die Einführung eines stoffspezifischen Korrekturfaktors \(f_i \) erforderlich. Dieser das Ansprechverhalten eines Stoffes charakterisierende Faktor wird als Responsefaktor bezeichnet und ist nach (3-1) definiert.

\[
f_i = \frac{c_i \cdot A_{i,\text{Std}}}{A_i \cdot c_{i,\text{Std}}} \]

(3-1)

\[
x_i = f_i \frac{A_i \cdot c_{i,\text{Std}}}{A_{i,\text{Std}} \cdot c_{\text{Probe}}} \]

(3-2)
Es ist nur selten der Fall, dass sämtliche Substanzen bzw. Peaks in einem Chromatogramm bekannt sind und dass sich die Massenanteile zu 100 Ma% aufaddieren. Daher werden in der Regel die bekannten Stoffe auf 100 % normiert oder der Rest als weitere, oft unbekannte Komponenten definiert.

GC-Analyse von rohem Palmöl

Die Arbeitsbedingungen bei der Analyse von Palmöl sind folgendermaßen:

<table>
<thead>
<tr>
<th>Interner Standard</th>
<th>1 mg Squalan / ml n-Hexan & Aceton (Volumenverhältnis 1:1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapillarsäule</td>
<td>Stationäre Phase : DB-5</td>
</tr>
<tr>
<td></td>
<td>Länge x ID : 30 m x 0,25 mm; Filmdicke 0,1 µm</td>
</tr>
<tr>
<td></td>
<td>Säulenmaterial : Fused silica</td>
</tr>
<tr>
<td></td>
<td>Hersteller : J & W</td>
</tr>
<tr>
<td>Träergas N₂</td>
<td>Säulenvordruck : 0,05 MPa</td>
</tr>
<tr>
<td></td>
<td>Totalfluss : ca. 100 ml / min</td>
</tr>
<tr>
<td></td>
<td>Splitverhältnis : ca. 1:100</td>
</tr>
<tr>
<td>Säulentemperatur</td>
<td>343 K (2 min) → (25 K / min) → 523 K → (4 K / min) → 553 K</td>
</tr>
<tr>
<td>Injektortemperatur</td>
<td>573 K</td>
</tr>
<tr>
<td>Detektortemperatur</td>
<td>623 K</td>
</tr>
<tr>
<td>Injektionsvolumen</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Zur Bestimmung der Responsefaktoren zwecks Analyse von rohem Palmöl wird eine Vergleichslösung aus Palmitinsäure\(^1\) und Ölsäure\(^2\) hergestellt und in vier verschiedenen Verdünnungen analysiert. In unserem Fall setzen sich die Proben nahezu vollständig aus Triglyceriden und freien Fettsäuren zusammen. Aufgrund der problemlosen Analyse der freien Fettsäuren wird vereinfachend deren Gehalt bestimmt und der Rest den Triglyceriden zugeordnet.

GC-Analyse von rohem Palmöl mit Fettsäureestern

\(^1\) Palmitinsäure, Merk, 323 K15816809 (>99 %)

\(^2\) Ölsäure, Merck, K21110181 513 (>99 %)

\(^3\) Ethylpalmitat, Lancaster, 00014542 211-064-6 (97 %)
GC-Analyse von Rohtocopherol

Interner Standard 0,5 ml Squalan / 250 ml Ethylacetat
Kapillarsäule Stationäre Phase : DB-5
Länge x ID : 30 m x 0,25 mm; Filmdicke 0,1 µm
Säulenmaterial : Fused silica
Hersteller : J & W
Trägergas N₂ Säulenvordruck : 0,05 MPa
Totalfluss : ca. 100 ml / min
Splitverhältnis : ca. 1:60
Säulentemperatur 473 K → (5 K / min) → 603 K
Injektortemperatur 573 K
Detektortemperatur 603 K
Injektionsvolumen 1 µl

3.2 HPLC-Analyse

Laufmittel Hexan (96 Vol%) mit Butyl-methyl-ether (4 Vol%)
Säule Stationäre Phase : LiChrosorb Diol 5 µm (Col. No. 612834)
Länge x ID : 250 x 4,6 mm
Säulenvordruck 5 MPa
Totalfluss 1300 µl / min
Injektionsvolumen 20 µl

Die Kalibrierung erfolgt mit vier Tocopherolen¹, die als Referenzlösungen in verschiedenen, bekannten Konzentrationen analysiert werden. Über die Verhältnisse der Peakflächen der Proben und der der zugehörigen Referenzen werden die Massenanteile bestimmt. Bei der Analyse der Tocotrienole wird ein gleiches Response-Verhalten wie bei den entsprechenden Tocopherolen angenommen.

¹ Merck Tocopherol-Kit Art. 15496 Chargenanalyse ZC382996
3.3 Spektrophotometrische Analyse

Zuerst wird zur Erstellung einer Kalibrierkurve eine Verdünnungsreihe von reinem β-Carotin und einem Lösemittelgemisch aus 30 Vol% Aceton und 70 Vol% n-Hexan analysiert. Die Auftragung ergibt im gemessenen Bereich nahezu eine Gerade, und die Messwerte lassen sich mit guter Genauigkeit mittels linearer Regression als Geradengleichung darstellen.

4 Phasengleichgewichte

4.1 Theoretische Grundlagen

4.1.1 Thermodynamische Grundlagen

Der zweite Hauptsatz der Thermodynamik ist Ausgangspunkt für die Herleitung von Gleichgewichtsbedingungen in mehrphasigen Stoffsystemen. Er lautet:

Prozesse können nur dann ablaufen, wenn die Gesamtentropie des Systems zunimmt oder im Grenzfall reversibler Prozessführung konstant bleibt.

Während der Einstellung des Gleichgewichtes nimmt also die Entropie S zu, ausgedrückt durch die mathematische Beziehung (4-1).

$$dS_{U,V,N} \geq 0$$ (4-1)

Die Entropie erreicht im Gleichgewichtszustand ein Maximum. Ausgehend von diesem Kriterium leitet beispielsweise Sandler [112] durch Extremalrechnung unter Berücksichtigung bestimmter Nebenbedingungen die anschaulicheren Gleichgewichtsbeziehungen (4-2) bis (4-4) für ein System aus N Komponenten und π Phasen her:

$$T^1 = T^2 = \ldots = T^\pi$$ Thermisches Gleichgewicht (4-2)

$$P^1 = P^2 = \ldots = P^\pi$$ Mechanisches Gleichgewicht (4-3)

$$\mu_i^1 = \mu_i^2 = \ldots = \mu_i^\pi \quad i = 1...N$$ Stoffliches Gleichgewicht (4-4)

Die obigen Beziehungen sagen aus, dass im Gleichgewichtszustand alle Phasen hinsichtlich der Temperatur, des Druckes und des chemischen Potentials μ gleich sind. Die Bedingungen für thermodynamische Stabilität eines Gleichgewichtszustandes sind in den Gleichungen (4-5) und (4-6) formuliert.

$$\left(\frac{\partial u}{\partial T} \right)_V > 0 \quad \text{bzw.} \quad c_V > 0$$ Thermische Stabilität (4-5)

$$\left(\frac{\partial P}{\partial V} \right)_T < 0 \quad \text{bzw.} \quad \left(\frac{\partial P}{\partial \rho} \right)_T > 0$$ Mechanische Stabilität (4-6)

4.1.1.1 Phasengleichgewichte binärer Stoffsysteme

Zwecks besserer Lesbarkeit werden Phasengleichgewichte in der Regel als isotherme Schnitte durch das dreidimensionale Diagramm dargestellt. In Bild 15 wird ein P-x-Diagramm gezeigt, das der fettgedruckten schraffierten Fläche in Bild 14 entspricht. Im dargestellten Diagramm sind vier Gebiete voneinander zu unterscheiden. In der Mitte befindet sich das Zweiphasengebiet, in dem Flüssig- und Gasphase koexistieren. Ein beliebiger Punkt in diesem Gebiet zerfällt bei konstantem Druck entlang einer sogenannten...

Nicht alle in dieser Arbeit untersuchten Stoffsysteme werden durch das in Bild 14 dargestellte Phasenverhalten wiedergegeben. Bevor der kritische Zustand erreicht wird, zersetzen sich einige der schwerflüchtigen Ausgangsmaterialien. Dennoch werden alle in diesen Untersuchungen ermittelten Phasengleichgewichte durch den oberen, fett gedruckten Teil der in Bild 15 dargestellten Phasengrenzlinie prinzipiell wiedergegeben. Der Dampfdruck P_A^0 der schwerflüchtigen Komponente liegt um mehrere Größenordnungen unterhalb des untersuchten Druckbereiches, so dass der untere Teil der Phasengrenzlinie in diesen Untersuchungen unberücksichtigt bleibt.

Das Phasenverhalten kann bereits bei einer binären Mischung sehr komplex sein und dadurch beispielsweise der Fall eintreten, dass bei isothermen Bedingungen die Löslichkeit der schwerflüchtigen Komponente in der Gasphase mit steigendem Druck abnimmt. Die in dieser Arbeit gemessenen Phasengleichgewichte weisen jedoch kein derart komplexes Verhalten auf.

4.1.1.2 Phasengleichgewichte ternärer Systeme

Die Darstellung von Phasengleichgewichten dreier Komponenten erfolgt im sogenannten Gibbs’schen Dreiecksdiagramm. Darin, siehe Bild 16, wird das Phasenverhalten für konstanten Druck und konstante Temperatur konzentrationsabhängig aufgetragen. Das Stoffsystem besteht aus schwerflüchtiger Komponente (SFK), leichtflüchtiger Komponente (LFK) und CO₂. In den Ecken des Diagramms beträgt der Anteil der dort angegebenen Komponente jeweils 100 % und nimmt mit zunehmendem Abstand bis zum Erreichen der gegenüberliegenden Seite linear auf 0 % ab.

Bild 16: Darstellung ternärer Phasengleichgewichte in Gibbs’schen Dreiecksdiagrammen

Die bereits oben beschriebenen Phasengebiete treten auch im Dreiecksdiagramm auf. Der Druckeinfluss und das Auftreten eines überkritischen Gebietes lässt sich für ternäre Systeme jedoch nicht in einem, sondern in der Zusammenschau mehrerer Dreiecksdiagramme, die

4.1.1.3 Die Wirkungsweise von Schleppmitteln

Schleppmittel finden Verwendung, um das Phasenverhalten hinsichtlich besserer Trenneigenschaften zu beeinflussen. Dazu gehören die Bereiche:

- Kapazitätserhöhung des überkritischen Gases (Löslichkeit)
- Verbesserung der Trennfaktoren (Selektivität)
- Erhöhung von Druck- und Temperaturabhängigkeit der Kapazität (Regeneration)

Als Schleppmittel sind in der Regel Substanzen geeignet, die hinsichtlich ihrer Flüchtigkeit und kritischen Temperatur eine Mittelstellung zwischen dem überkritischen Gas und der zu extrahierenden, schwerflüchtigen Komponente einnehmen. Verwendung finden zum Beispiel kurzkettige Alkohole wie Methanol und Ethanol [47], Alkane wie beispielsweise Propan, Aceton und andere, teilweise längerkettige Kohlenwasserstoffe [148].

4.1.1.4 Allgemeines über Zustandsgleichungen

Eine Zustandsgleichung (Equation of State, EOS) dient der mathematischen Beschreibung des Zusammenhanges zwischen Temperatur, Druck und Dichte eines Fluids. Das ideale Gasgesetz nach Gleichung (4-7) ist der einfachste und älteste Vertreter der Zustandsgleichungen. Es besagt, dass das Produkt aus Druck P und molarem Volumen v gleich dem Produkt aus Temperatur T und der allgemeinen Gaskonstante $R = 8,314 \text{ kJ/(kmol} \cdot \text{K})$ ist. Das molare Volumen v mit der Einheit m^3 / kmol entspricht dabei dem Kehrwert der molaren Dichte.

$$P \cdot v = R \cdot T \quad (4-7)$$

Das ideale Gasgesetz gilt nur für Gase unter geringem Druck. Ein Maß für das Abweichen vom idealen Verhalten ist der nach (4-8) definierte Kompressibilitätsfaktor Z. Mit steigendem Druck treten zunehmend Abweichungen von $Z = 1$, dem idealen Verhalten auf.

$$Z = \frac{P \cdot v}{R \cdot T} \quad (4-8)$$

Kubische Zustandsgleichungen

Modifizierte Virialgleichungen

Bei den Virialgleichungen handelt es sich um eine Reihenentwicklung des Kompressibilitätsfaktors, welche sowohl nach der Dichte (Leiden-Form) als auch nach dem Druck (Berlin-Form) erfolgen kann. Die Gleichung mit den dazugehörenden Virialkoeffizienten lässt sich mit Hilfe der statistischen Thermodynamik theoretisch ableiten. Anwendung finden diese EOS für Gasphasenberechnungen, für Flüssigkeiten sind sie dagegen nicht geeignet.

PvT-Berechnungen nach dem Korrespondenzprinzip

Das Korrespondenzprinzip beruht auf der Annahme, dass sich Stoffe mit gleichen reduzierten Größen \(p_R, T_R \) und \(v_R \), siehe (4-9), thermodynamisch ähnlich verhalten.

\[
P_R = \frac{P}{P_c}, \quad T_R = \frac{T}{T_c}, \quad v_R = \frac{v}{v_c}
\]

(4-9)

Es besteht ein Zusammenhang zwischen dem Kompressibilitätsfaktor \(Z \) und den Größen \(T_R \) und \(v_R \) : \(Z = f(T_R, v_R) \). Das erste Zwei-Parameter-Korrespondenzprinzip wurde von van der Waals [141] entwickelt. Eine Weiterentwicklung erfolgte durch die Einführung des azentrischen Faktors \(\omega \) durch Pitzer et al. [101]: \(Z = f(T_R, v_R, \omega) \). Der Faktor wird nach Gleichung (4-10) mit \(P_C \) und dem Sättigungsdruck bei \(T_R = 0,7 \) berechnet.

\[
\omega = -\log P_R(T_R = 0,7)
\]

(4-10)

Auf der statistischen Thermodynamik basierende Zustandsgleichungen

4.1.2 Auswahl und Beschreibung der verwendeten Modelle

4.1.2.1 Von ASPEN PLUS verwendete Gleichungen

Peng-Robinson-Zustandsgleichung

\[
P = \frac{R \cdot T}{v - b} - \frac{a(T)}{v^2 + 2 \cdot b \cdot v - b^2}
\]
(4-11)

mit
\[
a_{c,j} = 0,45724 \cdot \frac{R^2 \cdot T_{c,j}^2}{P_{c,j}}, \quad b_{c,j} = 0,07780 \cdot \frac{R \cdot T_{c,j}}{P_{c,j}}
\]
(4-12)

\[
a_i(T) = a_{c,j} \cdot \alpha(T_{R_i}, \omega_i), \quad b_i = b_{c,j}
\]
(4-13)

\[
\alpha_i(T) = \left[1 + m_i \cdot (1 - \sqrt{T_{R_i}})\right]^2
\]
(4-14)

\[
m_i = 0,37464 + 1,54226 \cdot \omega_i - 0,26992 \cdot \omega_i^2
\]
(4-15)

Bei der Phasengleichgewichtsberechnung von Mischungen ist die Anwendung von Mischungsregeln erforderlich, deren bekannteste von van der Waals [140] stammt. Die Parameter a und b der Mischung werden nach den Gleichungen (4-16) und (4-17) als Funktionen der Molanteile \(z_i\) der Einzelkomponenten und des Wechselwirkungsparameters \(k_{a,ij}\) berechnet. Der Parameter \(k_{a,ij}\) wird so gewählt, dass die Messergebnisse optimal wiedergegeben werden.
Van-der-Waals-Mischungsregeln

\[a = \sum_{i=1}^{N} \sum_{j=1}^{N} z_i \cdot z_j \cdot \sqrt{a_i \cdot a_j \cdot (1 - k_{ij})} \quad (4-16) \]

\[b = \sum_{i=1}^{N} z_i \cdot b_i \quad (4-17) \]

Redlich-Kwong-Soave-Zustandsgleichung

\[P = \frac{R \cdot T}{v - b} - \frac{a(T)}{v \cdot (v + b)} \quad (4-18) \]

mit

\[a_{ij} = 0,42747 \cdot \frac{R^2 \cdot T_{ij}^2}{P_{ij}} , \quad b_{ij} = 0,08664 \cdot \frac{R \cdot T_{ij}}{P_{ij}} \quad (4-19) \]

Die Berechnung der in der Redlich-Kwong-Soave-Zustandsgleichung verwendeten Parameter \(a \) und \(b \) erfolgt nach Gleichung (4-13), jedoch wird der in der \(\alpha \)-Funktion verwendete Parameter \(m \) nach Gleichung (4-20) berechnet.

\[m_i = 0,480 + 1,574 \cdot \omega_i - 0,176 \cdot \omega_i^2 \quad (4-20) \]

Boston-Mathias-Extrapolation

Die in Gleichung (4-14) vorgestellte \(\alpha \)-Funktion führt bei nieder molekularen Gasen oberhalb ihrer kritischen Temperatur zu hohen Abweichungen. Durch Verwendung einer von Boston und Mathias [15] modifizierten \(\alpha \)-Funktion nach (4-21) bis (4-23) liefern die Peng-Robinson- und Redlich-Kwong-Soave-Zustandsgleichungen für den überkritischen Temperaturbereich (\(T > T_C \)) bessere Ergebnisse.

\[\alpha_i(T) = [\exp \{ c_i \cdot (1 - T_{Rij}^2) \}]^2 \quad (4-21) \]

\[d_i = 1 + \frac{m}{2} \quad (4-22) \]

\[c_i = 1 - \frac{1}{d_i} \quad (4-23) \]
Redlich-Kwong-ASPEN

Die Redlich-Kwong-ASPEN-EOS ist im Kern mit der Gleichung von Redlich, Kwong und Soave [128] identisch. Durch die Einführung von Polarparametern \(\eta_i \) und die Erweiterung der Mischungsregel um die temperaturabhängigen Parameter \(k_{aij}^1 \) und \(k_{bij}^1 \) wird die Leistungsfähigkeit der Zustandsgleichung insbesondere hinsichtlich der Anwendung für polare Stoffe verbessert [79]. Für die Parameter \(b_{ij} \) wird eine neue Mischungsregel und ein neuer Wechselwirkungsparameter \(k_{b,ij} \) nach (4-24) eingeführt. Die Berechnung des Wechselwirkungsparameters erfolgt nach den Gleichungen (4-25) und (4-26).

\[
b = \sum_{i=1}^{N} \sum_{j=1}^{N} z_i \cdot z_j \cdot \frac{b_i \cdot b_j}{2} \cdot (1 - k_{bij}) \quad (4-24)
\]

\[
k_{a,ij}(T) = k_{a,ij}^0 - k_{a,ij}^1 \cdot \frac{T}{1000} \quad (4-25)
\]

\[
k_{b,ij}(T) = k_{b,ij}^0 - k_{b,ij}^1 \cdot \frac{T}{1000} \quad (4-26)
\]

Falls der Temperatureinfluss unberücksichtigt bleibt, werden die Parameter \(k_{a,ij}^0 \) und \(k_{b,ij}^0 \) gleich Null gesetzt. Der resultierende Wechselwirkungsparameter \(k_{a,ij} \) entspricht somit dem in Gleichung (4-16) vorgestellten Parameter der van-der-Waals-Mischungsregel. Der Parameter \(k_{b,ij} \) stellt eine Erweiterung der zur Berechnung von \(b \) verwendeten Mischungsregel dar.

Die Polarparameter finden für den unterkritischen Temperaturbereich \(T < T_c \) in der \(\alpha \)-Funktion von Boston-Mathias in (4-27) Verwendung.

\[
\alpha_i(T) = \left[1 + m_i \cdot \left(1 - \sqrt{T_{R,i}}\right) - \eta_i \cdot (1 - T_{R,i}) \cdot (0,7 - T_{R,i})\right]^2 \quad (4-27)
\]

Für \(\eta_i = 0 \) reduziert sich Gleichung (4-27) zur herkömmlichen Redlich-Kwong-Soave-EOS. Wird die kritische Temperatur des Reinstoffes überschritten, kommt die Extrapolation nach Boston-Mathias nach (4-21) bis (4-23) zum Einsatz, wobei die Gleichung (4-22) durch (4-28) ersetzt wird.

\[
d_i = 1 + \frac{m_i}{2} + 0,3 \cdot \eta_i \quad (4-28)
\]

In dieser Arbeit wird zur Korrelierung von Phasengleichgewichten ausschließlich die homogene Methode angewendet, was bedeutet, dass Gas- und Flüssigphase mit derselben Zustandsgleichung berechnet werden.
4.1.2.2 Von PE verwendete Gleichungen

Vom Phasengleichgewichtsprogramm PE wird in diesen Untersuchungen zusätzlich zu den im vorigen Kapitel definierten Zustandsgleichungen von Peng-Robinson und Redlich-Kwong-Soave noch die in (4-29) und (4-30) definierte Mathias-Klotz-Prausnitz-Mischungsregel nach Mathias et al. [78] verwendet.

\[a = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i \cdot x_j \cdot (\lambda_{ij}^{MKP} \cdot (1 - k_{ij}^{MKP}) + \sum_{i=1}^{N} x_i \cdot \left(\sum_{j=1}^{N} x_j \cdot \left(\frac{\lambda_{ij}^{MKP}}{\lambda_{ij}^{MKP}} \right)^{\frac{1}{2}} \right)^3 \]

mit \(k_{ij}^{MKP} = k_{ji}^{MKP} \) und \(\lambda_{ij}^{MKP} = -\lambda_{ji}^{MKP} \)

\[b_{ij} = \frac{b_i + b_j}{2} \cdot (1 - l_{ij}) \]

mit \(l_{ij} = l_{ji} \)

4.1.2.3 Verwendete Größen zur Benutzung von Berechnungsmethoden

Es gibt verschiedene Darstellungsformen von Phasengleichgewichten, mit welchen sich der während der Trennprozesse stattfindende Stofftransport erklären lässt. Diese in 5.1.3 ausführlich erklärten Berechnungsmethoden von McCabe-Thiele und Jänecke lassen sich für schwerflüchtige Mischungen verwenden, die als pseudobinäre Systeme beschrieben werden können. Die verschiedenen Komponenten des Ausgangsmaterials werden zu diesem Zweck entweder der leichtflüchtigen (LFK) oder der schwerflüchtigen Komponente (SFK) zugeteilt.

Um die Berechnungsmethoden von McCabe-Thiele und Jänecke computertechnisch nutzen zu können, müssen die Trennfaktoren anhand mathematischer Funktionen dargestellt werden. Zu diesem Zweck wird der Trennfaktor \(\alpha_{LFK,SFK} \) als empirische Funktion in Abhängigkeit vom lösemittelfreien Massenanteil der leichtflüchtigen Komponente in der Flüssigphase nach Gleichung (4-31) definiert.

\[\alpha_{LFK,SFK}(x_{LFK}) = a_1 + a_2 \cdot x_{LFK}^{a_3} \]

Durch Wahl bzw. Anpassung der Parameter \(a_1 \) bis \(a_3 \) kann der Trennfaktor einen konstanten, linearen oder exponentiellen Verlauf annehmen. Zur optimalen Wiedergabe ist auch eine abschnittsweise Definition von \(\alpha \) möglich.

Zur Verwendung des Jänecke-Diagrammes ist die Einführung der nach (4-32) definierten Beladung der schwerflüchtigen Mischung (Ausgangsmaterial) mit CO₂ notwendig. \(N_E \) gibt
die Beladung der Gasphase (Extraktphase, E) und \(N_R\) die der Flüssigphase (Raffinatphase, R) wieder.

\[
N_E = \frac{y_{CO_2}}{1 - y_{CO_2}}, \quad N_R = \frac{x_{CO_2}}{1 - x_{CO_2}}
\]

(4-32)

Zur Verwendung der computerunterstützten Berechnung nach dem Jänecke-Verfahren muss auch die in (4-32) definierte Beladung durch mathematische Funktionen dargestellt werden. Die Beladung der Gasphase wird durch (4-33) und die der Flüssigphase durch (4-34) wiedergegeben.

\[
N_E(y'_{LFK}) = e_1 + e_2 \cdot y'_{LFK} + e_3 \cdot \exp(-y'_{LFK} \cdot e_4)
\]

(4-33)

\[
N_R(x'_{LFK}) = r_1 + r_2 \cdot x'_{LFK}
\]

(4-34)

4.1.3 Messmethode

4.1.4 Auswertung von Phasengleichgewichts messungen

Im folgenden Kapitel wird die Vorgehensweise bei der Auswertung der Messungen von Phasengleichgewichten erläutert. Da sich die Untersuchungen ausschließlich mit dem Auftreten zweier Phasen, überkritisch und flüssig, befassen, wird die Herleitung der Zusammenhänge auf den Fall eines zweiphasigen Systems beschränkt.
Pseudobinäre Betrachtung

Bei der pseudobinären Betrachtung wird die Ausgangsware als schwerflüchtige und das überkritische Lösemittel als leichtflüchtige Komponente betrachtet. Es wird der Massenanteil des Gases in der schwerflüchtigen Phase bestimmt. Hierfür sind für jede Probe Angaben über das gezogene Gasvolumen V_{CO_2}, die zugehörige Gasdichte ρ_{CO_2} und die ausgefallene Masse an Schwerflüchtigem m_{SFK} erforderlich. Aus diesen Werten lassen sich die Gasanteile x_{CO_2} in der Flüssigphase bzw. y_{CO_2} in der Gasphase in Massenanteilen nach (4-35) berechnen.

$$x_{CO_2}, y_{CO_2} = \frac{V_{CO_2} \cdot \rho_{CO_2}}{V_{CO_2} \cdot \rho_{CO_2} + m_{SFK}}$$ (4-35)

Die Gasdichte des CO$_2$ wird mittels kreuzweiser Interpolation für die während der Versuchsdurchführung herrschenden Druck- und Temperaturbedingungen berechnet. Dabei werden Reinstoffdaten [61] im Bereich von 0,1 bis 0,2 MPa und 273 bis 283 K verwendet.

Mehrkomponentenbetrachtung

Besteht das Gesamtsystem aus mehr als 2 Komponenten, so genügt zu dessen vollständiger Beschreibung nicht nur die Angabe der Gaslöslichkeit. Eine genaue Aufschlüsselung der verschiedenen Anteile x_i und y_i in den beiden Phasen ist notwendig. Mit Hilfe dieser Anteile werden neue Größen wie der Verteilungskoeffizient (K-Faktor) und der Trennfaktor α definiert.

Der K-Faktor nach (4-36) gibt für jede Systemkomponente an, in welcher Phase diese, relativ betrachtet, angereichert wird. Für $K_i < 1$ verbleibt die Komponente vorwiegend in der Flüssigphase. Für $K_i > 1$ tritt sie bevorzugt in die Gasphase über. Falls $K_i = 1$ gilt, so findet eine gleichmäßige Verteilung der Komponente i auf beide Phasen statt, und es kann keine Trennung erzielt werden. Schwerflüchtige Substanzen besitzen einen K-Faktor unter 1 und leichtflüchtige einen über 1.

$$K_i = \frac{y_i}{x_i}$$ (4-36)

Das in diesen Untersuchungen als Trennhilfsmittel bzw. als Extraktionsmittel eingesetzte CO$_2$ wird nach erfolgter Trennung dem System wieder entzogen und daher bei der Bewertung der Größen x_i, y_i und K_i meist nicht berücksichtigt. In diesem Fall ist von lösemittelfreier Betrachtungsweise die Rede, und die lösemittelfreien Größen x'_i, y'_i und K'_i werden verwendet.

\[\lim_{x \to 1} K_i = 1 \]

(4-37)

Als Quotient zweier K-Faktoren ist der Trennfaktor \(\alpha \), der auch als relative Flüchtigkeit bezeichnet wird, nach (4-38) definiert. Er gibt an, wie gut sich Komponente i von Komponente j abtrennen lässt, ohne dabei andere Komponenten zu berücksichtigen. Für \(\alpha = 1 \) erfolgt keine Auftrennung von i und j. Der Trennfaktor \(\alpha \) ist als Selektivität des Lösemittels bezüglich einer speziellen Trennaufgabe aufzufassen.

\[\alpha_i = \frac{K_i}{K_j} = \frac{y_i \cdot x_j}{x_i \cdot y_j} \]

(4-38)

Fehlerbetrachtung

Zur Bewertung der Genauigkeit der eigenen Messwerte wird im Folgenden eine kurze Fehlerbetrachtung durchgeführt. Die Berechnung des maximalen Fehlers erfolgt durch Bildung des totalen Differentials [4]. Ist \(f(x) \) eine Funktion der Variablen \(x_1,.., x_n \) und sind die einzelnen Abweichungen \(\Delta x_i \) bekannt, so lässt sich die maximale Abweichung \(\Delta f_{Max} \) mittels des totalen Differentials von \(f(x) \) nach Gleichung (4-39) berechnen.

\[\Delta f_{Max} = f(x_1 + \Delta x_1,.., x_n + \Delta x_n) - f(x_1,.., x_n) = \sum_{i=1}^{n} \left| \frac{\partial f(x_1,.., x_n)}{\partial x_i} \right| \cdot \Delta x_i \]

(4-39)

Die Berechnung des relativen Fehlers \(\Delta f_{Max} / f(x) \) für die nach Gleichung (4-35) ermittelten Gaslöslichkeiten führt für die überkritische Phase zu sehr kleinen Werten, weil die Löslichkeit des eingesetzten Gases in der Gasphase nahezu 100 % und die relative Abweichung somit nahezu 0 % beträgt. Da der interessierende Bezugspunkt jedoch der Anteil der schwerflüchtigen Komponente in der Gasphase ist, werden die Fehlerabweichungen für die nach Gleichung (4-40) zu berechnenden Löslichkeiten der schwerflüchtigen Komponente bestimmt.

\[x_{SFK}, y_{SFK} = \frac{m_{SFK}}{V_{CO_2} \cdot \rho_{CO_2} + m_{SFK}} \]

(4-40)
Die Ableitungen nach Gleichung (4-39) liefern die relativen Fehler nach (4-41) bis (4-43).

\[\frac{\Delta x_{\text{SFK}}}{x_{\text{SFK}}} \cdot \frac{\Delta y_{\text{SFK}}}{y_{\text{SFK}}} = \frac{V_{\text{CO}_2} \cdot \rho_{\text{CO}_2} \cdot \Delta m_{\text{SFK}} + m_{\text{SFK}} \cdot \rho_{\text{CO}_2} \cdot \Delta V_{\text{CO}_2} + V_{\text{CO}_2} \cdot m_{\text{SFK}} \cdot \Delta \rho_{\text{CO}_2}}{m_{\text{SFK}} \cdot (m_{\text{SFK}} + V_{\text{CO}_2} \cdot \rho_{\text{CO}_2})} \]

\[\frac{\Delta K_i'}{K_i'} = \frac{\Delta x_i'}{x_i'} + \frac{\Delta y_i'}{y_i'} \]

\[\frac{\Delta \alpha_{ij}}{\alpha_{ij}} = \frac{\Delta x_i}{x_i} + \frac{\Delta y_i}{y_i} + \frac{\Delta x_j}{x_j} + \frac{\Delta y_j}{y_j} \]

Zur Berechnung der maximalen relativen Fehler müssen die Abweichungen der einzelnen Größen abgeschätzt werden. Bei der Probenahme treten durch unterschiedlich in der Kapillare verbleibende Tröpfchen Schwankungen bzw. Ungenauigkeiten von etwa \(\Delta m_{\text{SFK}} = 10 \text{ mg} \) auf. Die in der Temperaturschwankung (\(T = 291..301 \text{ K} \)) wie auch in den oben erwähnten Vereinfachungen begründete Abweichung der Gasdichte (\(\rho_{\text{CO}_2} \approx 1,78 \text{ kg/m}^3 \)) wird auf 2 % und somit \(\Delta \rho_{\text{CO}_2} = 0,0356 \text{ kg/m}^3 \) abgeschätzt. Das mit der kalibrierten Gasuhr gemessene Volumen für die Gasphase kann auf \(\Delta V = 10 \text{ ml} \) genau abgelesen werden, und das in der Flüssigphase enthaltene Gasvolumen wird mit der Bürette auf 1 ml genau bestimmt. Die relative Genauigkeit der Analysen beträgt etwa 2 %. Hieraus ergeben sich nach den Gleichungen (4-41) bis (4-43) folgende relative Abweichungen:

\[\frac{\Delta x_{\text{sf}}}{x_{\text{sf}}} = 1,0..3,8\% \quad \frac{\Delta y_{\text{sf}}}{y_{\text{sf}}} = 6,0..12,1\% \quad \frac{\Delta K_i'}{K_i'} = 4,0\% \quad \frac{\Delta \alpha_{ij}}{\alpha_{ij}} = 8,0\% \]

4.2 Phasengleichgewichtsmessungen

4.2.1 Aufbau der Phasengleichgewichtsapparatur

Der Aufbau der Versuchsapparatur ist Bild 17 zu entnehmen. Die Apparatur besteht im Wesentlichen aus zwei Autoklaven. Der größere der beiden ist der Gleichgewichtsautoklav und besitzt ein Volumen von etwa 1 000 ml. Es ist mit einem Magnetrührer\(^1\) ausgestattet, der das zu untersuchende Stoffsystem zwecks schnellerer Einstellung des Phasengleichgewichtes mit dem verdichteten CO\(_2\) durchmischt. Die Böden der beiden Autoklaven sind miteinander verbunden, so dass bei normaler Befüllung zwischen den Behältern Flüssigkeit ausgetauscht werden kann. Der Ausgleichsautoklav besitzt ein Volumen von circa 700 ml und ist an eine Hochdruckpumpe\(^2\) angeschlossen. Sie liefert einen konstanten CO\(_2\)-Ausgangsdruck und dient sowohl der Befüllung der Anlage als auch der Druckkompensation während der Probenahme. Alle notwendigen Anlagekomponenten werden mit elektrischen Heizbändern\(^3\) beheizt und sind wärmeisoliert. Die Temperaturschwankung liegt unterhalb von 0,5 K. Die Heizleistungen der Bänder werden per Hand eingestellt und die Taktung erfolgt über ein BASIC-Programm per PC. Dieser zeichnet die Messwerte von Temperatur\(^4\) und Druck\(^5\) auf. Mittels Berst scheiben ist die Anlage gegen Überdruck oberhalb 39,3 MPa gesichert.

\(^1\) Typ MRK41, Fa. Buddeberg, Mannheim
\(^2\) PM-101, Firma NWA, Lörach
\(^3\) Diverse Heizbänder der Horst GmbH, Lorsch
\(^4\) NiCr-Ni-Mantelthermoelemente
\(^5\) Dünnfilm-Messzelle Typ A05-H, Fa. STW, Kaufbeuren

Der Probenahmeapparat kommt hinsichtlich der Genauigkeit von Messungen eine große Bedeutung zu. Sie muss neben der vollständigen Phasentrennung gewährleisten, dass Gasvolumina von 0,1 bis 20 Liter ebenso genau bestimmt werden können wie Massen von Flüssigkeiten im Bereich von 10 mg. Die Proben müssen so gewonnen werden, dass sie für weitere Analysen zur Verfügung stehen. In Bild 18 ist das verwendete Probenahmesystem dargestellt. Die einphasige Probe wird vom Phasengleichgewichtsautoklaven kommend im Probenahmeventil gedrosselt und in die evakuierte Kühlzelle hinein entspannt. Um ein Auskondensieren der Probe vor dem Probenahmeventil zu verhindern, sind sämtliche hinter dem Phasengleichgewichtsautoklaven befindlichen Leitungen temperiert.

Bild 18: Probenahmesystem der Phasengleichgewichtsapparatur

1 Ventile Autoclave Engineers 10V2081, 20SC4071, Schmidt, Kranz & Co. GmbH, Velbert
2 von den beiden Probenahmeventilen und Kühlzellen ist nur eine exemplarisch dargestellt

1 Drehschieberpumpe RD4, Firma Vakuubrand, Wertheim
2 Experimentiergaszähler Gattung 111, Elster u. Co. AG, Mainz
4.2.2 Durchführung von Phasengleichgewichtsmessungen

Befüllen der Phasengleichgewichtsapparatur

Einstellen der gewünschten Druck- und Temperaturbedingungen

Die Probenahme

Um möglichst exakte Ergebnisse zu erhalten, werden jeweils 3 Proben von jeder Phase gezogen, zuerst von der Flüssig- und anschließend von der Gasphase. Zu Beginn der Messreihe wird die Kühlfalle evakuiert, bis das Vakuummeter\(^1\) einen Druck von maximal 0,5 mbar anzeigt. Wird dieser Wert nicht erreicht, sind die Blindströme durch vorhandene Leckagen zu hoch und die Probenahmeapparatur muss überprüft werden. Die gezogene Probe muss so groß sein, dass für die Bestimmung sowohl vom Gasphasenvolumen als auch von der Masse der auskondensierten Flüssigphase sowie zur Analyse ausreichende Mengen zur Verfügung stehen.

Messung bei veränderten Bedingungen

Sollen für das gleiche Stoffsystem weitere Messungen bei veränderten Bedingungen durchgeführt werden, so muss sichergestellt werden, dass im Ausgleichsautoklaven genügend Probenahmematerial vorhanden ist, um den Druckausgleich während des nächsten Versuches zu gewährleisten. Hierfür muss der Teil an Probemasse, der während des Versuches in den Gleichgewichtsautoklaven gedrückt wurde, wieder in den Ausgleichsautoklaven zurück gedrückt werden. Der Ausgleichsautoklav wird bei geschlossener Verbindungsleitung fast vollständig entspannt, ohne dass dabei Flüssigphase in die Gasablassleitung gelangt. Im Anschluss daran werden die neuen Bedingungen wie oben beschrieben eingestellt.

4.2.3 Versuchsprogramm der Phasengleichgewichtsmessungen

In Tabelle 9 wird eine Übersicht über die durchgeführten Phasengleichgewichtsversuche mit überkritischem CO\(_2\) gegeben. Bei der Verwendung von rohem Palmöl als Probenahmematerial beträgt (falls nicht anders angegeben) die Tocochromanolkonzentration 300 ppm und die \(\beta\)-Carotinkonzentration 400 ppm.

\(^1\) TR 201 / TM 200, Leybold AG
Tabelle 9: Übersicht der Phasengleichgewichtsversuche

<table>
<thead>
<tr>
<th>Probenmaterial</th>
<th>T / K</th>
<th>Druck / MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmöl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- naturbelassen (4,6 Ma% FFA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- mit 5,0 Ma% FAEE (4,4 Ma% FFA)</td>
<td>310; 340; 370</td>
<td>20,0; 25,0; 30,0</td>
</tr>
<tr>
<td>- mit 15,0 Ma% FAEE (4,0 Ma% FFA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kopfprodukt (29 Ma% FFA, 800 ppm Tocochromanole, 60 ppm β-Carotin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAEE (Schleppmittel) (54 Ma% Ethylpalmitat, 46 Ma% -oleat)</td>
<td>370</td>
<td>20,0; 25,0</td>
</tr>
<tr>
<td>FAME mit 200..20 000 ppm β-Carotin</td>
<td>320</td>
<td>10,0; 11,0; 12,0; 13,0; 15,0</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>12,5; 15,0 17,5; 20,0; 20,8</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>15,0 17,5; 20,0; 22,5; 24,0</td>
</tr>
<tr>
<td>Rohtocopherol</td>
<td>343; 353; 363; 373</td>
<td>30,0; 33,0</td>
</tr>
</tbody>
</table>

4.3 Experimentelle Ergebnisse der Phasengleichgewichtsmessungen

Wie später in 5.1.3 beschrieben wird, übt das Verhältnis von der zu messenden Probe zum Lösemittel einen Einfluss auf das Phasengleichgewicht aus, sobald es sich um ein ternäres oder höheres System handelt. Das Massenverhältnis von der Probe zum CO₂ liegt bei der verwendeten Phasengleichgewichtsapparatur im Bereich von 0,5 bis 2,0 kg/kg.

4.3.1 Rohes Palmöl mit CO₂

4.3.1.1 Binäre Löslichkeit

Bild 19: Binäre Löslichkeit von CPO und CO\textsubscript{2}

Zur Darstellung binärer Löslichkeiten findet ebenso die in Bild 20 gezeigte Auftragung über der Gasdichte Verwendung.

Bild 20: Binäre Löslichkeit von CPO und CO\textsubscript{2}

Tabelle 10: Gleichgewichtsdaten von CPO (4,6 Ma% FFA, 300 ppm Tocochromanole, 400 ppm β- Carotin, Rest Triglyceride) mit CO₂

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>ρ_CO₂ / (kg/m³)</th>
<th>x_CO₂ / Ma%</th>
<th>y_CO₂ / Ma%</th>
<th>K'_Toco / -</th>
<th>K'_FFA / -</th>
<th>K'_Tri / -</th>
<th>K'_Caro / -</th>
<th>α_LFK,SFK / -</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>20,0</td>
<td>857</td>
<td>28,79</td>
<td>99,52</td>
<td>11,95</td>
<td>3,84</td>
<td>0,86</td>
<td>0,28</td>
<td>4,53</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
<td>894</td>
<td>30,29</td>
<td>99,22</td>
<td>6,11</td>
<td>3,51</td>
<td>0,88</td>
<td>0,32</td>
<td>4,02</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>923</td>
<td>32,21</td>
<td>98,93</td>
<td>4,54</td>
<td>3,16</td>
<td>0,90</td>
<td>0,27</td>
<td>3,53</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>20,0</td>
<td>679</td>
<td>23,49</td>
<td>99,80</td>
<td>8,51</td>
<td>7,48</td>
<td>0,69</td>
<td>0,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,0</td>
<td>753</td>
<td>26,79</td>
<td>99,53</td>
<td>6,36</td>
<td>5,06</td>
<td>0,81</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,0</td>
<td>801</td>
<td>30,27</td>
<td>99,28</td>
<td>6,31</td>
<td>4,84</td>
<td>0,83</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>20,0</td>
<td>498</td>
<td>21,19</td>
<td>99,93</td>
<td>3,29</td>
<td>10,36</td>
<td>0,53</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,0</td>
<td>604</td>
<td>25,69</td>
<td>99,75</td>
<td>3,85</td>
<td>8,07</td>
<td>0,65</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,0</td>
<td>675</td>
<td>29,84</td>
<td>99,33</td>
<td>5,72</td>
<td>6,72</td>
<td>0,74</td>
<td>0,29</td>
</tr>
</tbody>
</table>

4.3.1.2 Mehrkomponentenbetrachtung

Neben der im vorigen Kapitel dargestellten binären Löslichkeit muss auch die Verteilung der einzelnen Komponenten des Palmöls in der überkritischen Gasphase und der Flüssigphase bekannt sein. Im Folgenden soll auf die in 4.1.4 eingeführten Verteilungskoeffizienten (K'-Faktoren) und Trennfaktoren von CPO und CO₂ eingegangen werden.

1 Die Löslichkeit des von [82] untersuchten Stoffsystems ist höher als die für CPO in CO₂, und somit besitzen ihre Vereinfachungen für das hier untersuchte System Gültigkeit.
K'-Faktoren

Wie aus Bild 21 abzulesen ist, streben die Verteilungskoeffizienten bei einer isothermen Druckerhöhung dem Wert K'_i = 1 entgegen, was einer fortschreitenden Absenkung der Selektivität entspricht. Die Ursache für dieses Verhalten liegt in der Annäherung an das Einphasengebiet. Die Eigenschaften der beiden Phasen werden zunehmend ähnlicher, bis schließlich keine Verteilung der Komponenten mehr auftritt und der K'-Faktor nicht mehr definiert ist.

![Diagramm K'-Faktoren der im rohen Palmöl enthaltenen Hauptkomponenten](image-url)

Bild 22: K′-Faktoren von FFA und Triglyceriden

Wird statt der beiden Parameter Druck und Temperatur die Dichte des überkritischen Lösemittels als charakteristische Größe verwendet, dann ergibt sich die in Bild 23 dargestellte Auftragung. Der K′-Faktor ist in diesem Fall eine Funktion der Gasdichte, die den Einfluss von Druck und Temperatur in nur einer Größe beschreibt. Für Tocochromanole und β-Carotin ergibt eine derartige Auftragung der K′-Faktoren keinen stetigen Verlauf.
Trennfaktoren

Der nach (4-38) definierte Trennfaktor α gibt an, wie gut sich eine Komponente i von einer Komponente j abtrennen lässt. Im Fall von CPO werden die 4 Hauptbestandteile in die 2 Pseudokomponenten leichtflüchtige Komponente (LFK) und schwerflüchtige Komponente (SFK) zusammengefasst. Die LFK umfasst Tocochromanole und freie Fettsäuren und die SFK Triglyceride und β-Carotin. Diese Einteilung erfolgt vor dem Hintergrund, dass ein erster Trennschritt mittels SFE das rohe Palmöl in diese beiden Fraktionen zerlegt.

Bild 24: Trennfaktoren für CPO in Abhängigkeit von T und P

Bild 25: Trennfaktoren für CPO in Abhängigkeit von ρ_{CO_2}

In Bild 26 sind die Trennfaktoren für 25 MPa und verschiedene Temperaturen konzentrationsabhängig dargestellt. Wie bereits die anderen Auftragungen ergeben haben, ist unter isobaren Bedingungen auch hier der Trennfaktor für höhere Temperaturen größer als für niedrigere, und die grafische Darstellung der Trennfaktoren nähert sich mit zunehmender Dichte (das bedeutet sinkende Temperatur bei sonst isobaren Bedingungen) einer Geraden. Mit steigendem Anteil an LFK verringert sich die Selektivität.

In Tabelle 11 sind die Ergebnisse der Phasengleichgewichtsmessungen des Kopfproduktes mit CO₂ aufgelistet.

Tabelle 11: Gleichgewichtsdaten von CPO-Kopfprodukt (29 Ma% FFA, 800 ppm Tocochromanole, 60 ppm β- Carotin, Rest Triglyceride) mit CO₂

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>$x'_{CO₂}$ / Ma%</th>
<th>$y'_{CO₂}$ / Ma%</th>
<th>K'_{Toco} / -</th>
<th>K'_{FFA} / -</th>
<th>K'_{Tri} / -</th>
<th>$α_{LFK,SFK}$ / -</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>20,0</td>
<td>31,30</td>
<td>98,55</td>
<td>4,12</td>
<td>2,09</td>
<td>0,55</td>
<td>3,835</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
<td>34,15</td>
<td>98,16</td>
<td>2,63</td>
<td>1,95</td>
<td>0,61</td>
<td>3,181</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>38,36</td>
<td>97,56</td>
<td>3,65</td>
<td>1,94</td>
<td>0,64</td>
<td>3,035</td>
</tr>
<tr>
<td>340</td>
<td>20,0</td>
<td>30,61</td>
<td>99,11</td>
<td>3,70</td>
<td>2,34</td>
<td>0,39</td>
<td>6,070</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
<td>33,68</td>
<td>98,40</td>
<td>3,38</td>
<td>2,17</td>
<td>0,50</td>
<td>4,318</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>37,46</td>
<td>97,62</td>
<td>3,00</td>
<td>2,09</td>
<td>0,56</td>
<td>3,746</td>
</tr>
<tr>
<td>370</td>
<td>20,0</td>
<td>19,87</td>
<td>99,65</td>
<td>2,07</td>
<td>2,58</td>
<td>0,27</td>
<td>9,414</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
<td>28,47</td>
<td>98,80</td>
<td>2,07</td>
<td>2,52</td>
<td>0,30</td>
<td>8,279</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>34,09</td>
<td>98,16</td>
<td>3,11</td>
<td>2,36</td>
<td>0,39</td>
<td>6,054</td>
</tr>
</tbody>
</table>
4.3.2 Rohes Palmöl und Ethylester als Schleppmittel mit CO₂

4.3.2.1 Binäre Löslichkeit

Bild 28 zeigt ein P-x-Diagramm für verschiedene hohe Konzentrationen von Fettsäureethylessern (FAEE) im rohen Palmöl. Mit zunehmendem Estergehalt steigt die binäre Löslichkeit stark an, das Zweiphasengebiet wird kleiner, und die Isothermen werden in die Mitte verschoben. Eine Auftragung verschiedener Isothermen für einen konstanten Gehalt an Schleppmittel würde den gleichen Verlauf wie in Bild 19 zeigen, mit sinkender Temperatur stiege die gegenseitige Löslichkeit.

Schleppmittel werden einem zu trennenden Stoffsystem nur für den Zeitraum des Trennprozesses zugefügt und hinterher wieder entfernt. Somit ist es sinnvoll, bei der Beurteilung des Schleppmitteleinflusses auch die Aufgabestellung zu betrachten, wie das Schleppmittel wieder vom Stoffsystem abgetrennt wird. Rechnerisch ist die Vorgehensweise so, dass der Anteil des Schleppmittels subtrahiert und die übrige Mischung auf 100 % normiert wird.

Primäres Ziel der Verwendung von Ethylestern als Schleppmittel ist nicht eine Kapazitätserhöhung, sondern eine Verbesserung der Carotinlöslichkeit im überkritischen Gas. Der Einfluss auf die Selektivität wird im folgenden Kapitel untersucht.

4.3.2.2 Mehrkomponentenbetrachtung

In Bild 29 sind die Verteilungskoeffizienten der im CPO enthaltenen Schlüsselkomponenten über dem Druck dargestellt. Ihre Flüchtigkeit nimmt in der Reihenfolge Fettsäureethylester, Tocochromanole, freie Fettsäuren, Triglyceride und β-Carotin ab. Der Einfluss des Druckes wird auch ersichtlich. Mit steigendem Druck und somit auch steigender Dichte streben die K'-Faktoren dem Wert $K'_i = 1$ entgegen.

Für die Berechnung der K'-Faktoren ist im vorliegenden Fall entscheidend, ob der Schleppmittelanteil berücksichtigt wird oder nicht. Die FAEE besitzen von den untersuchten Komponenten die bei weitem größte Flüchtigkeit und machen deshalb den Großteil der Gasphasenproben aus. Durch ihre Zugabe zum Stoffsystem verkleinern sich sämtliche Verteilungskoeffizienten. Hierdurch wird der Eindruck vermittelt, dass die Selektivität der leichtflüchtigen Komponenten ab- und die der schwerflüchtigen zunimmt. Werden die FAEE jedoch herausgerechnet, so ergibt sich ein anderes Bild. Der Einfluss auf die K'-Faktoren ist nur gering, und die Abweichungen bewegen sich fast ausschließlich im
Rahmen der Messgenauigkeit. Tendenziell werden steigende, nur für die Triglyceride sinkende, Verteilungskoeffizienten berechnet. Für β-Carotin sind diese Beobachtungen in Bild 30 dargestellt.

Bild 30: K'-Faktoren von β-Carotin bei 340 K

Der Einfluss des Schleppmittels auf das System des zu trennenden Stoffes und Lösemittels lässt sich besonders gut durch die ternäre Betrachtungsweise in Gibbs’schen Dreiecksdiagrammen erkennen. Zur Vervollständigung des Diagramms werden die binären Löslichkeiten des Randsystems FAEE und CO₂ gemessen. Im Dreiecksdiagramm in Bild 31 ist das Phasenverhalten für die Komponenten rohes Palmöl, CO₂ und die als potentielles Schleppmittel fungierenden Fettsäureethylester dargestellt. Es ist zu erkennen, dass für die mittelflüchtigen Ethylester bei 20 MPa für 310 und 340 K eine vollständige Mischbarkeit mit CO₂ vorliegt. Bei einem Druck von 20 MPa bildet sich erst für 370 K bzw. irgendwo zwischen 340 und 370 K eine Mischungslücke.

Die binäre Löslichkeit und Verteilungskoeffizienten für verschiedene Drücke, Temperaturen und Zusammensetzungen sind in Tabelle 12 aufgelistet.

Tabelle 12: Gleichgewichtsdaten von CPO und FAEE als Schleppmittel mit CO₂

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>X CO₂ / Ma%</th>
<th>Y CO₂ / Ma%</th>
<th>K' FAEE</th>
<th>K' Toco</th>
<th>K' FFA</th>
<th>K' Tri</th>
<th>K' Caro</th>
<th>X CO₂ / Ma%</th>
<th>Y CO₂ / Ma%</th>
<th>K' FAEE</th>
<th>K' Toco</th>
<th>K' FFA</th>
<th>K' Tri</th>
<th>K' Caro</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,0</td>
<td>28,57</td>
<td>99,10</td>
<td>11,0</td>
<td>8,38</td>
<td>2,68</td>
<td>0,57</td>
<td>0,14</td>
<td></td>
<td>32,56</td>
<td>97,69</td>
<td>5,56</td>
<td>3,42</td>
<td>1,20</td>
<td>0,42</td>
<td>0,11</td>
</tr>
<tr>
<td>25,0</td>
<td>31,22</td>
<td>98,75</td>
<td>10,5</td>
<td>7,66</td>
<td>2,69</td>
<td>0,63</td>
<td>0,15</td>
<td></td>
<td>33,41</td>
<td>97,04</td>
<td>5,43</td>
<td>2,63</td>
<td>1,52</td>
<td>0,47</td>
<td>0,13</td>
</tr>
<tr>
<td>30,0</td>
<td>33,77</td>
<td>98,33</td>
<td>8,60</td>
<td>4,76</td>
<td>2,46</td>
<td>0,70</td>
<td>0,20</td>
<td></td>
<td>35,35</td>
<td>96,56</td>
<td>5,00</td>
<td>2,19</td>
<td>1,77</td>
<td>0,51</td>
<td>0,14</td>
</tr>
<tr>
<td>20,0</td>
<td>26,60</td>
<td>99,50</td>
<td>13,4</td>
<td>2,78</td>
<td>4,03</td>
<td>0,44</td>
<td>0,13</td>
<td></td>
<td>29,02</td>
<td>98,79</td>
<td>6,46</td>
<td>3,29</td>
<td>2,01</td>
<td>0,32</td>
<td>0,07</td>
</tr>
<tr>
<td>25,0</td>
<td>29,07</td>
<td>99,06</td>
<td>12,1</td>
<td>6,49</td>
<td>3,64</td>
<td>0,51</td>
<td>0,16</td>
<td></td>
<td>32,16</td>
<td>98,02</td>
<td>5,92</td>
<td>2,81</td>
<td>2,31</td>
<td>0,42</td>
<td>0,12</td>
</tr>
<tr>
<td>30,0</td>
<td>33,34</td>
<td>98,40</td>
<td>9,44</td>
<td>6,75</td>
<td>3,16</td>
<td>0,63</td>
<td>0,21</td>
<td></td>
<td>34,88</td>
<td>96,94</td>
<td>5,29</td>
<td>2,93</td>
<td>2,12</td>
<td>0,49</td>
<td>0,16</td>
</tr>
<tr>
<td>20,0</td>
<td>21,99</td>
<td>99,79</td>
<td>14,8</td>
<td>4,38</td>
<td>5,07</td>
<td>0,29</td>
<td>0,11</td>
<td></td>
<td>23,81</td>
<td>99,42</td>
<td>7,42</td>
<td>4,06</td>
<td>2,83</td>
<td>0,22</td>
<td>0,06</td>
</tr>
<tr>
<td>25,0</td>
<td>27,84</td>
<td>99,46</td>
<td>13,2</td>
<td>4,91</td>
<td>4,55</td>
<td>0,37</td>
<td>0,16</td>
<td></td>
<td>27,01</td>
<td>98,82</td>
<td>7,09</td>
<td>3,73</td>
<td>2,72</td>
<td>0,28</td>
<td>0,08</td>
</tr>
<tr>
<td>30,0</td>
<td>30,70</td>
<td>98,91</td>
<td>10,9</td>
<td>6,57</td>
<td>4,69</td>
<td>0,48</td>
<td>0,23</td>
<td></td>
<td>31,34</td>
<td>97,89</td>
<td>6,89</td>
<td>2,70</td>
<td>2,83</td>
<td>0,36</td>
<td>0,13</td>
</tr>
</tbody>
</table>

In der Regel richtet sich das Interesse auf einen maximalen Gehalt an LFK im lösemittelfreien Extrakt. Dieses Maximum lässt sich durch eine einfache Konstruktion im Gibbs’schen Dreiecksdiagramm abschätzen. Das als Lösemittel verwendete, überkritische CO₂ wird nach erfolgter Extraktion wieder aus dem zu trennenden Stoffsystem entfernt, ohne dass sich dabei das Verhältnis von LFK zu SFK ändert. In den Dreiecksdiagrammen in Bild 33 wird diese Abscheidung entlang der gestrichelt gezeichneten Geraden, die durch die Punkte der Gasphase und die rechte Ecke (100 % CO₂) verlaufen, dargestellt. Der Punkt der Gasphase, der ein maximales Verhältnis von LFK zu SFK aufweist, wird durch Konstruktion einer Geraden ermittelt, die durch den Eckpunkt des reinen Kohlendioxids verläuft und das Zweiphasengebiet tangiert.

In Bild 33 ist zu erkennen, dass für eine vollständige Mischbarkeit von LFK und CO₂ (linkes Diagramm) der maximale Gehalt an LFK im lösemittelfreien Extrakt begrenzt ist. Beim Auftreten einer Mischungslücke (rechtes Diagramm) kann theoretisch ein Extrakt von 100 %-iger Reinheit gewonnen werden. Demnach sollten die Prozessbedingungen so gewählt werden, dass stets eine Mischungslücke auftritt. Der Druck sollte so gering bzw. die Temperatur so hoch eingestellt werden, dass keine vollständige Mischbarkeit zwischen der LFK und dem CO₂ auftritt.
Zusammenfassende Beurteilung

4.3.3 Fettsäuremethylester und β-Carotin mit CO₂

Vorbemerkung

Mit zunehmendem Druck bei konstanter Temperatur steigt in der Regel die gegenseitige Mischbarkeit von Stoffen. So ist unter erhöhtem CO₂-Druck eine verbesserte Löslichkeit von β-Carotin in Fettsäureestern möglich. Allerdings gestaltet sich die Messung unter Druck schwierig, da das Absetzen der carotinreichen Phase im Hochdruckautoklaven allein
aufgrund von Dichteunterschieden im Gravitationsfeld der Erde erfolgen muss. Der Einsatz einer Zentrifuge unter Hochdruck ist bei diesen Untersuchungen nicht zu realisieren. Um möglichst vollständiges Absetzen zu erreichen, wird ersatzweise für einen Versuch exemplarisch eine Absetzzeit von 5 Tagen gewählt. Für einen CO₂-Druck von 10 MPa bei 320 K wird eine Sättigungskonzentration von 2 300 ppm β-Carotin im FAME ermittelt, was im Rahmen der Messgenauigkeit der Sättigungskonzentration unter Normalbedingungen entspricht. Die im Vergleich zu den Molekülen des β-Carotins oder der Ester relativ kleinen CO₂-Moleküle üben im untersuchten Bereich keinen großen Einfluss auf die Sättigungskonzentration aus.

Zur Abdeckung eines für den Anreicherungsprozess von β-Carotin interessanten Konzentrationsbereich werden die Phasengleichgewichte von Lösungen mit 200, 2 000, 10 000 und 20 000 ppm β-Carotin bestimmt. Die Vermessung der Phasengleichgewichte der beiden hohen Konzentrationen soll unter anderem klären, ob der Grad der Übersättigung einen Einfluss auf die Carotinkonzentration in der Gasphase ausübt.

4.3.3.1 Binäre Löslichkeit

Es zeigt sich das bekannte Verhalten, dass unter isothermen Bedingungen die binäre Löslichkeit mit steigendem Druck zunimmt und sich das Zweiphasengebiet beim Erreichen eines bestimmten Druckes schließt.

Bild 34: Binäre Löslichkeit von CO₂ und FAME + β-Carotin
Die Auftragung der Beladung der Gasphase in Bild 35 zeigt die gewohnte Abhängigkeit. Unter isothermen Bedingungen steigt die Beladung mit zunehmender Gasdichte, und bei gleicher Dichte liefern höhere Temperaturen höhere Beladungen.

![Diagramm zur Beladung von CO₂ mit FAME](image)

Bild 35: Beladung von CO₂ mit FAME

4.3.3.2 Mehrkomponentenbetrachtung

Zur Klärung der Frage, ob der Grad der Übersättigung einen Einfluss auf die Carotinkonzentration in der Gasphase ausübt, sind in Bild 37 die Messdaten von Ausgangsmaterialien mit 2 000, 10 000 und 20 000 ppm β-Carotin in FAME dargestellt.

![Diagramm](image_url)

Bild 38: Trennfaktoren von CO₂ und FAME + β-Carotin

Die Ergebnisse der Phasengleichgewichtsmessungen für verschiedene Temperaturen, Drücke und Konzentrationen sind in Tabelle 13 aufgelistet.
Tabelle 13: Gleichgewichtsdaten FAME / β-Carotin / CO₂

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>(p_{\text{CO}_2}) / (kg/m³)</th>
<th>(x_{\text{CO}_2}) / Ma%</th>
<th>(y_{\text{CO}_2}) / Ma%</th>
<th>(y_{\text{Caro,200}}) / ppm</th>
<th>(y_{\text{Caro,2,000}}) / ppm</th>
<th>(y_{\text{Caro,10,000}}) / ppm</th>
<th>(y_{\text{Caro,20,000}}) / ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,0</td>
<td>448</td>
<td>36,94</td>
<td>99,77</td>
<td>13</td>
<td>456</td>
<td>9</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>11,0</td>
<td>560</td>
<td>40,79</td>
<td>98,71</td>
<td>-</td>
<td>195</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,0</td>
<td>626</td>
<td>45,02</td>
<td>96,69</td>
<td>-</td>
<td>-</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td>650</td>
<td>46,72</td>
<td>95,43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>13,0</td>
<td>669</td>
<td>47,57</td>
<td>94,41</td>
<td>-</td>
<td>-</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,0</td>
<td>725</td>
<td>56,47</td>
<td>85,75</td>
<td>-</td>
<td>-</td>
<td>840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,0</td>
<td>745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

340								
12,5	400	31,25	99,73	-	13	9	19	
15,0	534	39,93	98,47	3	21	23	30	
17,5	621	46,67	94,82	9	141	147	99	
20,0	678	55,39	86,16	-	-	-	762	
20,8	693	57,14	80,95	-	-	-	1341	
22,0	712							

360								
15,0	388	30,43	99,61	9	10	30	77	
17,5	479	33,93	98,72	1	20	28	37	
20,0	552	39,85	96,51	5	-	60	206	
22,5	607	47,23	91,93	-	-	-	714	
24,0	635	49,64	88,65	-	-	-	2059	
25,0	651							

einphasig

einphasig

einphasig

4.3.4 Rohtocopherol mit CO₂

4.3.4.1 Binäre Löslichkeit

Zur Aufkonzentrierung von d,l-α-Tocopherol aus Rohtocopherol wurden Untersuchungen mit einer Mischung von Propan und CO₂ als Lösemittel durchgeführt [98]. Phasengleichgewichtsmessungen, Simulationsergebnisse und Trennversuche zeigen die Möglichkeit, α-Tocopherol bei einem Verlust von 8 % auf eine Produktreinheit bis 99 Ma% anzureichern. Die Ergebnisse lassen vermuten, dass Untersuchungen mit reinem CO₂ als Lösemittel wegen dessen geringen Kapazität von unter 1 Ma% nicht sinnvoll sind. Dem stehen Messungen von
Neumann [88] gegenüber, der bei 363 K und 29 MPa Beladungen von 1,8 Ma% Rohtocopherol in CO₂ misst. Aufgrund dieser ausreichend großen Beladung, und weil der apparate- und regelungstechnische Aufwand für einen Prozess mit reinem CO₂ wesentlich geringer ist als für eine Mischung aus CO₂ und Propan, wird die Trennung von Rohtocopherol mit reinem Kohlendioxid untersucht.

In Bild 39 zeigen eigene Messungen, kombiniert mit Ergebnissen von Neumann [88], der sich mit dem gleichen Ausgangsmaterial beschäftigte, dass durch den Einsatz von komprimiertem CO₂ akzeptable Beladungen erreicht werden können. Wie in der Abbildung zu erkennen ist, steigt die Beladung der Gasphase mit zunehmender Gasdichte kontinuierlich an. Bei gleicher Dichte ist die Beladung für höhere Temperaturen größer, was sich mit dem erhöhten Dampfdruck begründen lässt. Für einen Druck von 33 MPa werden je nach untersuchter Temperatur Beladungen von 2,6 bis 3,1 Ma% erreicht.

4.3.4.2 Mehrkomponentenbetrachtung

Die Proben der verschiedenen Phasen weisen einen deutlichen Farbunterschied auf. Während die Flüssigphase dieselbe bräunliche Farbe wie die Ausgangssubstanz aufweist, ist die Gasphase hellgelb. Bei der Analyse mittels GC wird hinsichtlich der Retentionszeiten

Anhand der Chromatogramme kann dennoch die oben erwähnte Differenzierung in LFK und SFK vorgenommen werden. Mit den Analyseergebnissen lassen sich die in Bild 40 und Bild 41 dargestellten Verteilungskoeffizienten und Trennfaktoren berechnen.

Die in Bild 40 dargestellte Auftragung zweier Isobaren über der Temperatur zeigt nur eine sehr geringe Temperaturabhängigkeit der Verteilungskoeffizienten. Auch der Einfluss des Druckes ist unter Berücksichtigung der Maßstäbe relativ schwach ausgeprägt. Somit ergeben sich auch für die in Bild 41 aufgetragenen Trennfaktoren annähernd konstante Werte, die kaum einem Einfluss von Temperatur und Druck unterliegen. Allenfalls ließe sich eine geringe Verbesserung der Selektivität mit steigender Temperatur feststellen, aber die Veränderungen sind derart gering, dass sie innerhalb der Messgenauigkeit liegen.

Bild 40: K'-Faktoren von Rohtocopherol
Die Ergebnisse der Phasengleichgewichtsmessungen von Rohtocopherol mit CO₂ sind in Tabelle 14 aufgelistet.

Tabelle 14: Daten Rohtocopherol

<table>
<thead>
<tr>
<th>T (K)</th>
<th>P (MPa)</th>
<th>ρ_{CO₂} (kg/m³)</th>
<th>x_{CO₂} (Ma%)</th>
<th>y_{TOCO} (Ma%)</th>
<th>K_{LFK} / -</th>
<th>K_{Toco} / -</th>
<th>K_{SFK} / -</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>30,0</td>
<td>788</td>
<td>25,89</td>
<td>2,45</td>
<td>4,78</td>
<td>0,88</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>812</td>
<td>28,46</td>
<td>3,09</td>
<td>4,37</td>
<td>0,90</td>
<td>0,52</td>
</tr>
<tr>
<td>353</td>
<td>30,0</td>
<td>746</td>
<td>25,56</td>
<td>2,17</td>
<td>4,92</td>
<td>0,86</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>773</td>
<td>28,19</td>
<td>2,94</td>
<td>4,34</td>
<td>0,88</td>
<td>0,54</td>
</tr>
<tr>
<td>363</td>
<td>30,0</td>
<td>703</td>
<td>25,65</td>
<td>2,11</td>
<td>5,16</td>
<td>0,87</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>734</td>
<td>27,38</td>
<td>2,88</td>
<td>4,39</td>
<td>0,89</td>
<td>0,54</td>
</tr>
<tr>
<td>373</td>
<td>30,0</td>
<td>662</td>
<td>27,66</td>
<td>2,00</td>
<td>5,06</td>
<td>0,85</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>696</td>
<td>29,83</td>
<td>2,57</td>
<td>4,32</td>
<td>0,89</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Bild 41: Trennfaktor von Rohtocopherol
4.3.4.3 Adsorptive Reinigung von Rohtocopherol mit Silica

Die für die dunkle Farbgebung verantwortliche Komponente ist nur in sehr geringen Mengen im Rohtocopherol enthalten, sie macht jedoch, wie oben bereits beschrieben wurde, zur Reinigung einen weiteren Trennschritt unerlässlich. Die Abtrennung der schwerflüchtigen Komponente mittels SFE erfordert, das gesamte Rohtocopherol im CO₂ zu lösen und als Extrakt zu entfernen. In Hinblick auf den Lösemittelverbrauch ist das eine sehr aufwendige Trennung. Um sie zu umgehen, wird in dieser Arbeit die adsorptive Entfärbung von Rohtocopherol untersucht.

Die zur Adsorption verwendete Säule besitzt bei einem Durchmesser von 14,2 mm und einer Länge von 322 mm ein Volumen von 51 ml. In dieses Volumen werden etwa 15,5 g Kieselgel¹ eingerüttelt. Die Schüttungsdichte liegt somit bei 304 g / l. Aufgrund der hohen Viskosität des Rohtocopherols ist zur Förderung mittels einer HPLC-Pumpe² eine Erwärmung notwendig. Die Versuche werden bei einer Temperatur von 340 K im Wärmeschrank durchgeführt, nur die HPLC-Pumpe ist außerhalb positioniert.

Die durch die schwerflüchtigen Verunreinigungen bewirkte Dunkelfärbung kann mittels Adsorption an Kieselgel teilweise entfernt werden. Beim Durchlaufen der Säule verändert sich die Farbe von dunkelbraun nach hellbraun. Eine weitere Farbaufhellung ist mit diesem Adsorptionsmittel nicht zu erreichen, denn ein zweiter Durchlauf des durch Adsorption teilweise entfärben Rohtocopherols durch frisches Kieselgel bewirkt keine zusätzliche Aufhellung. Der Verbrauch an Adsorptionsmittel beträgt bei der gewählten Flussrate von 2 g/min durchschnittlich 150 g Silica / kg Rohtocopherol. Bei weiterer Belastung kommt es zum Durchbruch, und das Rohtocopherol verlässt die Säule ohne Farbaufhellung.

Wird die Säule einige Stunden in ihrem beladenen Zustand gelassen, so wird festgestellt, dass die Kapazität des Adsorptionsmittels noch nicht erreicht ist, sondern dass der Stofftransport sehr langsam erfolgt und wahrscheinlich aufgrund der hohen Viskosität gehemmt ist. Die Beladung des Kieselgels ließe sich durch sehr kleine Flussraten noch erhöhen.

In der beladenen Säule verbleiben circa 40,4 g Rohtocopherol, entsprechend 2,6 g Rohtocopherol pro 1 g Silica. Bei einer Dichte des Tocopherols von 947 g/l (für 20 °C) entspricht das einer Porosität der Ausgangsschüttung von ε = 84 %.

¹ Lieferung von der F. Hoffmann-La Roche AG, Kaiseraugst, Schweiz
² LC Pump Typ 414, Tegimenta AG, Rotkreuz, Schweiz
Durch Extraktion der beladenen Säule mit überkritischem CO₂ bei 30 MPa und 333 K gelingt es, die Säule vom Tocopherol wieder zu entladen, und es verbleibt ein rieselfähiges, schmutzig graues Kieselgel. Seine Masse liegt nur wenige Milligramm über der Ausgangsmasse. Durch mehrfaches Waschen mit Aceton wird der adsorbierte, dunkle Farbstoff extrahiert. Das wiedergewonnene Tocopherol besitzt die gleiche Zusammensetzung wie das Ausgangsprodukt und kann der Adsorption erneut zugeführt werden. Der Tocopherolgehalt sinkt bei jedem Durchgang durch die Säule um jeweils etwa 1 Ma%. Da auch nach einem Spülen der Säule mit Stickstoff dieser Verlust auftritt, ist nicht auszuschließen, dass der Tocopherolverlust allgemein durch die Handhabung oder durch Wechselwirkungen mit dem Silica auftritt.

Unabhängig davon, ob die erreichte Farbaufhellung den Produktanforderungen entspricht, müssen noch in einem weiteren Trennschritt die leichtflüchtigen Komponenten entfernt werden. In Bild 42 ist das Schema des Trennprozesses dargestellt.

![Diagramm des Trennprozesses](image)

Bild 42: Kombiniertes Verfahren zur Reinigung von Rohtocopherol

4.4 Korrelierung der Phasengleichgewichte

4.4.1 Verwendung von ASPEN PLUS

4.4.1.1 Bestimmung fehlender Stoffdaten

experimentelle Daten wie Dampfdrücke oder Dichten. Tabelle 15 liefert eine Übersicht und Bewertung der in ASPEN PLUS 10 vorhandenen Schätzmethoden.

<table>
<thead>
<tr>
<th>Stoffwert</th>
<th>Methode</th>
<th>Eingangsparameter</th>
<th>Genauigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_B)</td>
<td>Joback Struktur</td>
<td>(T_C, P_C, P_0(T))</td>
<td>mäßig befriedigend</td>
</tr>
<tr>
<td></td>
<td>Gani Struktur</td>
<td></td>
<td>befriedigend</td>
</tr>
<tr>
<td></td>
<td>Mani</td>
<td></td>
<td>gut</td>
</tr>
<tr>
<td>(T_C)</td>
<td>Joback Struktur, (T_B)</td>
<td>(T_C, P_C, P_0(T))</td>
<td>befriedigend</td>
</tr>
<tr>
<td></td>
<td>Lydersen Struktur, (T_B)</td>
<td>(T_C, P_C, P_0(T))</td>
<td>mäßig befriedigend</td>
</tr>
<tr>
<td></td>
<td>Ambrose Struktur, (T_B)</td>
<td>(T_C, P_C, P_0(T))</td>
<td>befriedigend</td>
</tr>
<tr>
<td></td>
<td>Fedors Struktur</td>
<td>(T_C, P_C, P_0(T))</td>
<td>mäßig</td>
</tr>
<tr>
<td></td>
<td>Gani Struktur</td>
<td>(P_C, P_0(T))</td>
<td>befriedigend</td>
</tr>
<tr>
<td></td>
<td>Mani</td>
<td></td>
<td>gut</td>
</tr>
<tr>
<td>(P_C)</td>
<td>Joback Struktur</td>
<td>(T_B, T_C, P_C)</td>
<td>befriedigend</td>
</tr>
<tr>
<td></td>
<td>Lydersen Struktur, MW</td>
<td>(T_B, T_C, P_C)</td>
<td>mäßig befriedigend</td>
</tr>
<tr>
<td></td>
<td>Ambrose Struktur, MW</td>
<td>(T_B, T_C, P_C)</td>
<td>mäßig</td>
</tr>
<tr>
<td></td>
<td>Gani Struktur</td>
<td>(P_C, P_0(T=0,7 \cdot T_C))</td>
<td>befriedigend</td>
</tr>
</tbody>
</table>

4.4.1.2 Regression von Parametern

Tabelle 17: Berechnungsmethoden für überkritische Mischungen

<table>
<thead>
<tr>
<th>Methode</th>
<th>Zustandsgleichung</th>
<th>besondere Erweiterungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peng-ROB</td>
<td>Peng-Robinson</td>
<td></td>
</tr>
<tr>
<td>RK-SOAVE</td>
<td>Redlich-Kwong-Soave</td>
<td></td>
</tr>
<tr>
<td>LK-PLOCK</td>
<td>Lee-Kesler-Plöckner</td>
<td></td>
</tr>
<tr>
<td>PR-BM</td>
<td>Peng-Robinson</td>
<td>α-Funktion nach Boston-Mathias (BM)</td>
</tr>
<tr>
<td>RKS-BM</td>
<td>Redlich-Kwong-Soave</td>
<td>α-Funktion nach Boston-Mathias (BM)</td>
</tr>
<tr>
<td>RK-ASPEN</td>
<td>Redlich-Kwong-Soave</td>
<td>wie RKS-BM, zusätzlich Polarparameter</td>
</tr>
</tbody>
</table>

wird deutlich, dass diese Vorgehensweise berechtigt ist. Die Ergebnisse der für die verschiedenen Phasengleichgewichte ermittelten Parameter sind in Tabelle 18 und Tabelle 19 aufgelistet.

Tabelle 18: EOS-Parameter von ASPEN PLUS für CO₂ / Rohtocopherol

<table>
<thead>
<tr>
<th>T / K</th>
<th>PR-BM</th>
<th>RKS-BM</th>
<th>RKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>343-373</td>
<td>k_{aij}</td>
<td>ω</td>
<td>Δx %</td>
</tr>
<tr>
<td>343</td>
<td>0,080</td>
<td>1,254</td>
<td>1</td>
</tr>
<tr>
<td>353</td>
<td>0,079</td>
<td>1,312</td>
<td>1</td>
</tr>
<tr>
<td>363</td>
<td>0,081</td>
<td>1,280</td>
<td>0</td>
</tr>
<tr>
<td>373</td>
<td>0,172</td>
<td>-0,06</td>
<td>3</td>
</tr>
</tbody>
</table>

Die Parameterkorrelierung erfolgt für jedes Stoffsystem sowohl für den gesamten gemessenen Temperaturbereich als auch für jede Temperatur einzeln. Im letzteren Fall werden, wie in Kapitel 4.1.2 bereits beschrieben wurde, die Parameter k^1_{aij} und k^1_{bij} gleich Null gesetzt. Zu jedem regressierten Datensatz werden zur Bewertung der Wiedergabequalität die relativen Abweichungen der berechneten Massenanteile der schwerflüchtigen Komponenten von den Messwerten angegeben. Die relativen Abweichungen der Gasphase liegen aufgrund der kleinen Absolutwerte teilweise sehr hoch, obwohl die Messdaten gut repräsentiert werden. Bei der mittleren Abweichung handelt es sich um einen Summenparameter, der nicht immer angemessen zur Bewertung der Simulationsergebnisse geeignet ist. In einer grafischen Darstellung ist die quantitative Wiedergabe der Daten und der qualitative Verlauf der Phasengleichgewichtsliinien am besten zu beurteilen.

Tabelle 19: EOS-Parameter von ASPEN PLUS für CO₂ / FAME

<table>
<thead>
<tr>
<th>T / K</th>
<th>PR-BM</th>
<th>RKS-BM</th>
<th>RKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-360</td>
<td>k_{aij}</td>
<td>ω</td>
<td>Δx %</td>
</tr>
<tr>
<td>320</td>
<td>0,056</td>
<td>1,049</td>
<td>5</td>
</tr>
<tr>
<td>340</td>
<td>0,050</td>
<td>1,149</td>
<td>5</td>
</tr>
<tr>
<td>360</td>
<td>0,061</td>
<td>1,087</td>
<td>2</td>
</tr>
</tbody>
</table>
Randbemerkung:
Die Vorgabe der Messgenauigkeit bei der Verwendung von ASPEN übt einen Einfluss auf die Konvergenz und das Ergebnis der Korrelation aus. Es werden die bei den Phasengleichgewichtsmessungen auftretenden Schwankungen von 0,1 MPa für den Druck und 0,5 K für die Temperatur zu Grunde gelegt. Die absoluten Konzentrationschwankungen werden mit $\Delta x_{\text{CO}_2} = 1,0 \text{ Ma}\%$ und $\Delta y_{\text{CO}_2} = 0,1 \text{ Ma}\%$ vorgegeben. Bei der Verwendung von Massenannteilen ist die Vorgabe des Molekulargewichtes notwendig, weil die Zustandsgleichungen intern mit molaren Größen rechnen.

4.4.1.3 Simulation der Phasengleichgewichte

CO$_2$ / Rohtocopherol

In Bild 43 wird bereits angedeutet, dass sich die simulierten Isothermen von Flüssig- und Gasphase nicht beliebig weit annähern und sich nicht zu einem geschlossenen Gebiet verbinden werden. Bei der Berechnung des Phasengleichgewiches bis zu 100 MPa wird dieser Verdacht bestätigt. Die PR- und RKS-EOS sagen oberhalb von etwa 40 MPa eine Abnahme der binären Löslichkeit voraus, und der einphasige Zustand wird nicht erreicht.
Die RK-ASPEN-EOS ist hinsichtlich der Extrapolierbarkeit besser geeignet. Wie in Bild 44 anhand der Auftragung zu erkennen ist, sagt diese Zustandsgleichung zumindest für Temperaturen oberhalb von 353 K ein Einphasengebiet vorher. Die oberen Kurven der Phasengrenzlinien können meist nicht simuliert werden, sie lassen sich aber wegen ihres eindeutigen Verlaufs jedoch leicht manuell ergänzen.
CO₂ / Fettsäuremethylester

![Bild 45: Binäre Löslichkeit von FAME in CO₂](image-url)

Rohes Palmöl / CO₂

4.4.2 Verwendung von PE

CO₂ / Rohtocopherol

Tabelle 20: EOS-Parameter von PE für CO\textsubscript{2} / Rohtocopherol

<table>
<thead>
<tr>
<th>T / K</th>
<th>(k^{\text{MKP}}_{ij})</th>
<th>(l_{ij})</th>
<th>(\lambda^{\text{MKP}}_{ij})</th>
<th>(\Delta \text{CO}_2\text{,ges} / %)</th>
<th>(k^{\text{MKP}}_{ij})</th>
<th>(l_{ij})</th>
<th>(\lambda^{\text{MKP}}_{ij})</th>
<th>(\Delta \text{CO}_2\text{,ges} / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>1,9268</td>
<td>0,4300</td>
<td>3,1702</td>
<td>0,26</td>
<td>1,2088</td>
<td>0,2681</td>
<td>1,9421</td>
<td>0,47</td>
</tr>
<tr>
<td>353</td>
<td>2,1014</td>
<td>0,4751</td>
<td>3,4666</td>
<td>0,18</td>
<td>1,3657</td>
<td>0,3072</td>
<td>2,2157</td>
<td>0,25</td>
</tr>
<tr>
<td>363</td>
<td>1,9347</td>
<td>0,4304</td>
<td>3,1823</td>
<td>0,80</td>
<td>1,076</td>
<td>0,2266</td>
<td>1,6803</td>
<td>0,63</td>
</tr>
<tr>
<td>373</td>
<td>1,3240</td>
<td>0,2941</td>
<td>2,1258</td>
<td>0,07</td>
<td>0,1846</td>
<td>0,0334</td>
<td>0,1459</td>
<td>0,46</td>
</tr>
</tbody>
</table>

Bild 46: Binäre Löslichkeit von Rohtocopherol und CO\textsubscript{2}
CO₂ / FAME

![Diagramm CO₂ / FAME](image)

Bild 47: Binäre Löslichkeit von FAME und CO₂

Tabelle 21: EOS-Parameter von PE für CO₂ / FAME

<table>
<thead>
<tr>
<th>T / K</th>
<th>kₗₘₖₚ</th>
<th>lₗ</th>
<th>λₗₘₖₚ</th>
<th>ΔCO₂,ges / %</th>
<th>kₗₘₖₚ</th>
<th>lₗ</th>
<th>λₗₘₖₚ</th>
<th>ΔCO₂,ges / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>0,6064</td>
<td>0,1923</td>
<td>0,9110</td>
<td>5,29</td>
<td>0,4119</td>
<td>0,1046</td>
<td>0,5888</td>
<td>3,97</td>
</tr>
<tr>
<td>340</td>
<td>0,7876</td>
<td>0,2481</td>
<td>1,2106</td>
<td>7,69</td>
<td>0,5317</td>
<td>0,1367</td>
<td>0,7891</td>
<td>6,86</td>
</tr>
<tr>
<td>360</td>
<td>1,020</td>
<td>0,3318</td>
<td>1,5955</td>
<td>8,67</td>
<td>0,6499</td>
<td>0,1788</td>
<td>0,9855</td>
<td>6,90</td>
</tr>
</tbody>
</table>

Bild 48: Verlauf der Parameter

4.4.3 Korrelation mittels empirischer Gleichungen

In Kapitel 4.1.2.3 wurden die empirischen Funktionen zur konzentrationsabhängigen Wiedergabe des Trennfaktors und der Beladungen vorgestellt. Die folgenden beiden Abschnitte beschreiben die Bestimmung der zu den empirischen Funktionen gehörenden Parameter.
4.4.3.1 Korrelierung des Trennfaktors

Die Gleichung (4-31) dient zur konzentrationsabhängigen Beschreibung des Trennfaktors. Für das Stoffsystem FAME/β-Carotin besteht, wie die im Kapitel 4.3 in Bild 38 dargestellten Phasengleichgewichte verdeutlichen, im untersuchten Konzentrationsbereich kein Einfluss der Carotinkonzentration auf den Trennfaktor. Er ist bei konstantem Druck und konstanter Temperatur konzentrationsunabhängig, so dass der Parameter a_1 gleich dem Trennfaktor und die Parameter a_2 und a_3 gleich Null gesetzt werden können. Die Phasengleichgewichtsmessungen von Rohtocopherol wurden für ein Ausgangsmaterial mit konstanter Zusammensetzung durchgeführt. Da somit keine Aussagen über eine Konzentrationsabhängigkeit zu treffen sind, wird wie im Fall der Fettsäuremethylester/β-Carotin mit konstanten Trennfaktoren gerechnet.

Die Ergebnisse der korrelierten Parameter für den Trennfaktor sind im Anhang in Tabelle 24 bis Tabelle 26 zusammen mit den Parametern zur Beschreibung der Beladung aufgelistet. Ist eine in den Gleichungen (4-31), (4-33) oder (4-34) vorkommende Variable nicht in den Tabellen aufgelistet, so beträgt ihr Wert Null.

4.4.3.2 Korrelierung der Beladungen

Anhand der Gleichungen (4-33) und (4-34) werden die Beladungen der schwerflüchtigen Mischung (Ausgangsmaterial) mit Lösemittel für beide Phasen beschrieben. Die durch die im Anhang in Tabelle 24 bis Tabelle 26 für die Stoffsysteme CPO, FAME / β-Carotin und Rohtocopherol aufgelisteten Koeffizienten eindeutig festgelegten funktionalen Zusammenhänge werden bei der Benutzung der Berechnungsverfahren nach McCabe-Thiele und Jänecke verwendet. Die Beladungen werden nur für das Stoffsystem CPO / CO₂ als konzentrationsabhängig angesehen.

Da die Beladung im Raffinat N_R mit einem Wert von unter 1 im Verhältnis zur Beladung im Extrakt N_E verschwindend gering ist, übt sie auf die Stufenkonstruktion im Jänecke-Diagramm einen vernachlässigbar kleinen Einfluss aus und könnte gleich Null gesetzt werden. Sie wird jedoch zur Erstellung der Massenbilanz benötigt und muss somit berücksichtigt werden.
5 Gegenstromtrennung mit überkritischen Fluiden

5.1 Theoretische Grundlagen

5.1.1 Entwicklung der Gegenstrom-SFE

Bild 50: Gegenstromextraktionskolonne
Die chronologische Betrachtung der Literaturstellen zum Thema der Gegenstromextraktion in Tabelle 22 und Tabelle 23 führt zu einem detaillierten Überblick ihrer Entwicklungsgeschichte. Die ersten Untersuchungen zur Gegenstromextraktion mit überkritischen Gasen begannen in den siebziger Jahren und dienten dazu, ein Verständnis für das neue Trennverfahren der Gasextraktion zu gewinnen. Es galt, die folgenden Teilaspekte zu analysieren:

- Prozessführung: Lösemittel, Schleppmittel, Abscheidung, Stoffströme
- Hydrodynamik: Stofftransport, Kolonneneinbauten, Belastbarkeit
- Wirtschaftliche Aspekte: Geeignete Stoffsysteme, Lösemittelkreislauf

- Speiseöl
- Fischöl
- Zitrusöl
- Milchfett
- Ethanol in wässrigen Lösungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Stoffsystem / Trennaufgabe</th>
<th>Extraktionsbedingungen</th>
<th>Kolonne</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Mono- und Diglyceride mit Aceton als Schleppmittel</td>
<td>343..358 K, 13 MPa; (\nu \geq 0)</td>
<td>51 Glockenböden (300 cm), 65 mm (\varnothing)</td>
<td>[109]</td>
</tr>
<tr>
<td>1979</td>
<td>Glyceride / Fettsäuren mit Aceton als Schleppmittel</td>
<td>343 K, 13 MPa; (\nu \geq 0)</td>
<td>100 cm Raschig-Ringe, 12 mm (\varnothing)</td>
<td>[108]</td>
</tr>
<tr>
<td>1982</td>
<td>Stearinsäureglyceride (+ Propan, Aceton) + Entsäuerung von CPO und Sonnenblumenöl</td>
<td>343 K, 14 MPa; (\nu \geq 0)</td>
<td>51 Glockenböden, 240 cm Sulzer CY, 69 mm (\varnothing)</td>
<td>[59]</td>
</tr>
<tr>
<td>1985</td>
<td>Ölsäureglyceride (+ Aceton, Ethan)</td>
<td>343 K, 14 MPa; (\nu = \infty)</td>
<td>180 cm diverse Packungen, 25 mm (\varnothing)</td>
<td>[137]</td>
</tr>
<tr>
<td>1985</td>
<td>Lecithin aus Sojaöl mit Propan als Schleppmittel (disk.)</td>
<td>333 K, 9 MPa; (\nu \geq 0)</td>
<td>110 cm Sulzer CY, 25 mm (\varnothing)</td>
<td>[146]</td>
</tr>
<tr>
<td>1989</td>
<td>Ölsäuremonoglyceride aus Glyceriden mit Propan</td>
<td>313 K, 12 MPa; (\nu \geq 0)</td>
<td>320 cm Sulzer CY, 12 mm (\varnothing), Druckpulsation</td>
<td>[38]</td>
</tr>
<tr>
<td>1990</td>
<td>Ölsäureglyceride mit Propan als Schleppmittel</td>
<td>313 K, 20 MPa; (\nu \geq 0)</td>
<td>500 cm Sulzer CY, 35 mm (\varnothing)</td>
<td>[49]</td>
</tr>
<tr>
<td>1991</td>
<td>Tocopherol aus Dämpferdestillaten (+Ethanol)</td>
<td>323..363 K, 13..20 MPa; (\nu = 0)</td>
<td>200 cm Drahtwendeln / Teflonringe, 17,5 mm (\varnothing)</td>
<td>[17]</td>
</tr>
<tr>
<td>1991</td>
<td>Diglyceride aus Mischungen mittels CO₂ / Propan</td>
<td>313..338, 12 MPa; (\nu \geq 0)</td>
<td>200 cm diverse Packungen, 69 mm (\varnothing)</td>
<td>[30]</td>
</tr>
<tr>
<td>1992</td>
<td>Cholesterin aus Butter mit nachgeschalteter Adsorption</td>
<td>313..333 K, 14..24 MPa; (\nu \geq 0)</td>
<td>61 cm Gewebdraht / Drahtwendeln; 17,5 mm (\varnothing)</td>
<td>[69]</td>
</tr>
<tr>
<td>1992</td>
<td>Raffination von Olivenöl</td>
<td>313..333 K, 8..15 MPa; (\nu \geq 0)</td>
<td>300 cm Sulzer EX Packung, 30 mm (\varnothing)</td>
<td>[13]</td>
</tr>
<tr>
<td>1993</td>
<td>Raffination von Rapsöl</td>
<td>313 K, 12 MPa, (\nu = 0)</td>
<td>640 / 550 cm Sulzer CY, 33 / 69 mm (\varnothing)</td>
<td>[50]</td>
</tr>
<tr>
<td>1993</td>
<td>Squalen aus verestertem Olivenöldämpferdestillat</td>
<td>313..333 K, 11..17 MPa; (\nu \geq 0)</td>
<td>300 cm Sulzer-Ringe, 30 mm (\varnothing)</td>
<td>[14]</td>
</tr>
<tr>
<td>1993</td>
<td>Entsleimung von Sojaöl</td>
<td>343 K, 55 MPa; (\nu = 0)</td>
<td>91 cm Packung, 76 mm (\varnothing)</td>
<td>[72]</td>
</tr>
<tr>
<td>1993</td>
<td>Desodorierung und Entsäuerung von Erdnussöl</td>
<td>300..330 K, 10..20 MPa; (\nu = 0)</td>
<td>162 cm Gewebdrahtpackung, 28,6 mm (\varnothing)</td>
<td>[149]</td>
</tr>
<tr>
<td>1994</td>
<td>Tocopherol aus Dämpferkondensaten</td>
<td>343..373 K, 19..30 MPa; (\nu \geq 0)</td>
<td>600 cm Drahtwendeln, 17,5 mm (\varnothing)</td>
<td>[45]</td>
</tr>
<tr>
<td>1996</td>
<td>Raffination von Palmöl (mit Ethanol als Schleppmittel)</td>
<td>323..338 K, 10..27 MPa; (\nu = 0)</td>
<td>61 cm Gewebdrahtpackung, 17,5 mm (\varnothing)</td>
<td>[93]</td>
</tr>
<tr>
<td>1996</td>
<td>Squalen, Tocopherol, Sterine aus Sojaöldämpferdestillat</td>
<td>343..363 K, 23..26 MPa; (\nu \geq 0)</td>
<td>600 cm Gewebdrahtpackung, 17,5 mm (\varnothing)</td>
<td>[116]</td>
</tr>
<tr>
<td>1998</td>
<td>FFA und Tocopherol aus Palmöldämpferdestillat</td>
<td>353..373 K, 26..29 MPa; (\nu \geq 0)</td>
<td>600 cm Gewebdrahtpackung, 17,5 mm (\varnothing)</td>
<td>[74]</td>
</tr>
<tr>
<td>Jahr</td>
<td>Stoffsystem / Trennaufgabe</td>
<td>Extraktionsbedingungen</td>
<td>Kolonne</td>
<td>Autor</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1983</td>
<td>Ethanol aus wässrigen Lösungen (semikontinuierlich)</td>
<td>293..368 K, 7..25 MPa; (v \geq 0)</td>
<td>340 cm Drahtmaschen, 17,5 mm Ø</td>
<td>[60]</td>
</tr>
<tr>
<td>1987</td>
<td>Alkanole</td>
<td>268..313 K, 8..12 MPa, (v = 0)</td>
<td>Siebbodenkolonne, 25,4 mm Ø</td>
<td>[62]</td>
</tr>
<tr>
<td>1987</td>
<td>Ethanol und Isopropanol aus wässrigen Lösungen</td>
<td>308..313 K, 10 MPa; (v = 0)</td>
<td>61 cm Raschig-Ringe / 122 cm Sprühturm; 25,4 mm Ø</td>
<td>[106]</td>
</tr>
<tr>
<td>1989</td>
<td>Phenole aus Carbolöl</td>
<td>313-393 K, 9..21 MPa; (v \geq 0)</td>
<td>560 cm Gewebdrahtpackung, 34 mm Ø</td>
<td>[55]</td>
</tr>
<tr>
<td>1990</td>
<td>Geschmacksstoffe aus Milchfett</td>
<td>318..333 K, 17..20 MPa; (v = 0)</td>
<td>100 cm Raschig-Ringe, 35 mm Ø</td>
<td>[33]</td>
</tr>
<tr>
<td>1991</td>
<td>Modellmischung von Kohlenwasserstoffen, Milchfett</td>
<td>318..353 K, 13..20; (v = 0)</td>
<td>60 cm Gewebdrahtpackung (3..5 mm), 17,5 mm Ø</td>
<td>[32]</td>
</tr>
<tr>
<td>1992</td>
<td>Mehrfach ungesättigte Fettsäuren / Propan / CO(_2)</td>
<td>333 K, 13..14 MPa, (v \geq 0) 313..333 K, 9..15 MPa, (v \geq 0)</td>
<td>600 cm Drahtwendeln, 17,5 mm Ø 1260 cm Sulzer CY Packungen, 70 mm Ø</td>
<td>[142]</td>
</tr>
<tr>
<td>1993</td>
<td>Fraktionierung von Milchfett (Triglyceride, Vitamine)</td>
<td>313K, 24,1 MPa, (v = 0)</td>
<td>61 cm Gewebdrahtpackung, 17,5 mm Ø</td>
<td>[105]</td>
</tr>
<tr>
<td>1993</td>
<td>Fraktionierung von Milchfett (Triglyceride, Vitamine)</td>
<td>313..348, 34..24,1 MPa, (v = 0)</td>
<td>180 cm Gewebdrahtpackung, 49 mm Ø</td>
<td>[8]</td>
</tr>
<tr>
<td>1995</td>
<td>Ethanol aus wässrigen Lösungen</td>
<td>308..323 K, 9,1..12,2 MPa, (v= 0)</td>
<td>100 cm Sprühkolonne / Gewebdraht, 31,8 mm Ø</td>
<td>[68]</td>
</tr>
<tr>
<td>1995</td>
<td>Tocopherol</td>
<td>343..353 K, 20..22 MPa, (v \geq 0)</td>
<td>1360 cm Sulzer-Packung CY, 35 mm Ø</td>
<td>[88]</td>
</tr>
<tr>
<td>1995</td>
<td>Zitrusöl</td>
<td>313..333 K, 9..12 MPa; (v \geq 0)</td>
<td>100 cm Dixon-Packung, 9 mm Ø</td>
<td>[113]</td>
</tr>
<tr>
<td>1996</td>
<td>Fettsäureethylester aus Fischöl</td>
<td>313..353 K, 10..16 MPa; (v \geq 0)</td>
<td>600 / 1 300 cm Sulzer-Packung, 17,5 / 68 mm Ø</td>
<td>[110]</td>
</tr>
<tr>
<td>1997</td>
<td>Squalen aus Haifischleberöl</td>
<td>313..333 K, 20..25 MPa, (v= 0)</td>
<td>250 cm Raschig-Ringe, 56 mm Ø</td>
<td>[25]</td>
</tr>
<tr>
<td>1998</td>
<td>Zitrusöl</td>
<td>313..333 K, 8,8 MPa; (v \geq 0)</td>
<td>180 cm Dixon-Packung, 20 mm Ø</td>
<td>[114]</td>
</tr>
<tr>
<td>1999</td>
<td>Zitrusöl</td>
<td>323..343 K, 8..13 MPa, (v \geq 0)</td>
<td>400 cm Sulzer EX Packung, 25,4 mm Ø</td>
<td>[21]</td>
</tr>
</tbody>
</table>
In Abhängigkeit des verwendeten Feeds ist die Einflussnahme auf die in der Gegenstromtrennung auftretenden Stoffströme bzw. auf das Lösemittelverhältnis sehr different. In polaren Ausgangssubstanzen, wie beispielsweise wässrigen Lösungen, löst sich kaum CO₂. Das bedeutet, dass die Eigenschaften der Flüssigphase durch das überkritische Fluid nur wenig beeinflusst werden. Für ein unpolares Feed, wie zum Beispiel ein Öl, gelten gänzlich andere Bedingungen, weil sich CO₂ zu einem hohen Anteil in der Flüssigphase löst. Für Mischungen von Ethanol und Wasser wurden die Versuche bei geringen Lösemittelverhältnissen von etwa 1 durchgeführt, die Kolonnen also als Blasensäulen betrieben. Bei der Auftrennung von Ölen war das Lösemittelverhältnis mit über 10 eher groß, die Füllkörper wurden teilweise nur unvollständig benetzt. Dieser Sachverhalt muss bei der Bewertung der Trennprozesse berücksichtigt werden. Alle Forscher, die sich mit Trennproblemen auf dem Gebiet der SFE beschäftigten, zeigten, dass das SFE-Verfahren im Prinzip geeignet ist, schränkten jedoch ein, dass es sehr teuer und noch nicht ausreichend erforscht sei.

5.1.1.1 Prozessführung

Lösemittel / Schleppmittel

Abscheidetechnik

Für den Fall der Extraktzusammensetzung aus mehreren Komponenten, besteht durch eine mehrstufige Abscheidung (sukzessive Entspannung bzw. Temperaturerhöhung) auch die Möglichkeit, mehrere Fraktionen an Extrakto zu erhalten. Diese Methode der Abscheidung ist in Bild 51 dargestellt.

Rücklauf

gearbeitet wurde, so war es meistens ein interner Rücklauf. Dieser war hinsichtlich des Aufwands an Apparaten und Regelung einfacher zu realisieren, und er genügte dem Ziel, die Durchführbarkeit einer Trennung nachweisen zu können.

5.1.1.2 Hydrodynamik und wirtschaftliche Aspekte

5.1.2 Bilanzierung einer Gegenstromtrennkolonne

sogenannten Berechnungsmethoden von McCabe-Thiele und Jänecke, werden im Folgenden die vom Programm verwendeten Formeln hergeleitet. Sie entsprechen exakt den grafischen, in der Regel manuell durchgeführten, Verfahren.

Die Formel (5-1) zur Berechnung vom lösemittelfreien Massenanteil der leichtflüchtigen Komponente in der Gasphase y' aus dem lösemittelfreien Anteil der leichtflüchtigen Komponente in der Flüssigphase x' durch die konzentrationsabhängige Vorgabe des Trennfaktors α ergibt sich durch Umformen der Definitionsgleichung (4-38) des Trennfaktors für ein binäres Gemisch.

\[
y'_{\text{LFK}}(x'_{\text{LFK}}) = \frac{x'_{\text{LFK}} \cdot \alpha(x'_{\text{LFK}})}{1 + x'_{\text{LFK}} \cdot [\alpha(x'_{\text{LFK}}) - 1]} \quad (5-1)
\]

Die in den folgenden Herleitungen verwendeten Größen werden in Bild 52 erklärt. Die lösemittelfreie Massenbilanz erfolgt nach den Gleichungen (5-2) bis (5-5).

\[
\begin{align*}
\dot{m}'_{\text{LFK,F}} &= \dot{m}'_{\text{LFK,E}} + \dot{m}'_{\text{LFK,R}} \quad (5-2) \\
x'_{\text{LFK,F}} \cdot \dot{m}'_F &= x'_{\text{LFK,E}} \cdot \dot{m}'_E + x'_{\text{LFK,R}} \cdot \dot{m}'_R \quad (5-3) \\
\dot{m}'_R &= \dot{m}'_F \cdot \frac{x'_{\text{LFK,F}} - x'_{\text{LFK,E}}}{x'_{\text{LFK,R}} - x'_{\text{LFK,E}}} \quad (5-4) \\
\dot{m}'_E &= \dot{m}'_F - \dot{m}'_R \quad (5-5)
\end{align*}
\]

Wie zu erkennen ist, spielt für die Bilanzierung die Genauigkeit der Zusammensetzungen von Feed (F), Extrakt (E) und Raffinat (R) eine große Rolle, da diese Größen bei der Bestimmung des Massenstromes in die Gleichungen eingehen.

Die folgenden Beziehungen gelten für die Bilanzierung mit Lösemittel. Die Gleichungen (5-6) bis (5-9) beziehen sich auf das Feed.

Bild 52: Extraktionskolonne zur Bilanzierung
\[\dot{m}_F = \dot{m}_F' + \dot{m}_{LMF} \quad (5-6) \]
\[x_{LFK,F} = \frac{x_{LFK,F}' \cdot \dot{m}_F'}{\dot{m}_F} \quad (5-7) \]
\[x_{SFK,F} = \frac{\dot{m}_F' - x_{LFK,F}' \cdot \dot{m}_F'}{\dot{m}_F} \quad (5-8) \]
\[x_{LMF} = 1 - x_{LFK,F} - x_{SFK,F} \quad (5-9) \]

Für das Raffinat gelten die Beziehungen (5-10) bis (5-13).

\[x_{LFK,R} = \frac{x_{LFK,R}'}{1 + \frac{x_{LMR}}{x_{LFK,R} + x_{SFK,R}}} = \frac{x_{LFK,R}'}{1 + N_R(x_{LFK,R})} \quad (5-10) \]
\[x_{SFK,R} = \frac{1 - x_{LFK,R}}{1 + N_R(x_{LFK,R})} \quad (5-11) \]
\[x_{LMR} = 1 - x_{LFK,R} - x_{SFK,R} \quad (5-12) \]
\[\dot{m}_R = \dot{m}_R' \frac{x_{LFK,R}'}{x_{LFK,R}} \quad (5-13) \]

Der Extraktmassenstrom, der auch das im Abscheider abgetrennte Lösemittel noch umfasst, berechnet sich nach (5-14).

\[\dot{m}_E = \dot{m}_{LM,frisch} + \dot{m}_F - \dot{m}_R \quad (5-14) \]

Durch die Vorgabe von \(x_{LFK,F}', \dot{m}_F, \dot{m}_{LMF}, x_{LFK,E}', N_E(y_{LFK}), N_R(x_{LFK}) \) ist der Rücklauf bereits bestimmt. Er wird daher nicht als Absolutwert vorgegeben, sondern es wird lediglich berücksichtigt, ob mit oder ohne Rücklauf gefahren wird. Falls mit Rücklauf gefahren wird, gilt die Beziehung (5-15).

\[\dot{m}_{Kopf} = \dot{m}_{Kopf}' \cdot (y_{LFK,Kopf} + y_{SFK,Kopf}) \]
\[= \frac{\dot{m}_{LM,Kopf}}{y_{LM,Kopf}} \cdot (y_{LFK,Kopf} + y_{SFK,Kopf}) \]
\[= \frac{\dot{m}_{LM,E}}{N_E(x_{LFK,E})} = \frac{\dot{m}_E - \dot{m}_E'}{N_E(x_{LFK,E})} \quad (5-15) \]
Wenn die Korrelierung der Beladung exakt die Bedingungen im Kolonnenkopf wiedergibt, dann ist Gleichung (5-15) auch bei Versuchen ohne Rücklauf anzuwenden. Der lösemittelfreie Kopfstrom ist dann gleich dem lösemittelfreien Extraktstrom. Da in der Regel aber die reale Beladung nicht dem Wert der Korrelation entspricht, muss bei Fahrweisen ohne Rücklauf Gleichung (5-16) angewendet werden. Der Rücklaufstrom wird nach (5-17) berechnet.

\[
\dot{m}_{\text{Kopf}} = \dot{m}_E \tag{5-16}
\]

\[
\dot{m}_{\text{Rück}} = \dot{m}_{\text{Kopf}} - \dot{m}_E \tag{5-17}
\]

\[
\nu = \frac{\dot{m}_{\text{Rück}}}{\dot{m}_E} \tag{5-18}
\]

Die Zusammensetzung des Extraktes, welches immer noch das im Abscheider abgetrennte Lösemittel umfasst, berechnet sich nach den Gleichungen (5-19) bis (5-21).

\[
x_{\text{LFKE}} = \frac{x_{\text{LFKE}} \cdot \dot{m}_E}{\dot{m}_E} \tag{5-19}
\]

\[
x_{\text{SFKE}} = \frac{\dot{m}_E - x_{\text{LFKE}} \cdot \dot{m}_E}{\dot{m}_E} \tag{5-20}
\]

\[
x_{\text{LME}} = 1 - x_{\text{LFKE}} - x_{\text{SFKE}} \tag{5-21}
\]

Die Zusammensetzung des Stromes, der den Kolonnenkopf verlässt, wird nach (5-22) bis (5-24) berechnet.
5.1.3 Das Konzept der theoretischen Trennstufe

5.1.3.1 McCabe-Thiele-Methode

\[
x_{LFK,Kopf} = \frac{\dot{m}_{LFK,Kopf}}{\dot{m}_{Kopf} + \dot{m}_{LM,Kopf}} \quad (5-22)
\]

\[
x_{SFK,Kopf} = \frac{\dot{m}_{SFK,Kopf} \cdot (1 - x_{LFK,Kopf}^{*})}{\dot{m}_{Kopf} \cdot [1 + N_E(1 - x_{LFK,Kopf}^{*})]} \quad (5-23)
\]

\[
x_{LM,Kopf} = 1 - x_{LFK,Kopf}^{*} - x_{SFK,Kopf} \quad (5-24)
\]

\[\dot{m}_{\text{Kopf}} \cdot y'_{\text{LFK}} = \dot{m}_{\text{Rück}} \cdot x'_{\text{LFK}} + \left(\dot{m}_{\text{Kopf}} - \dot{m}_{\text{R}} \right) \cdot x'_{\text{LFKE}} \quad (5-25) \]

\[\dot{m}_{\text{Sumpf}} \cdot y'_{\text{LFK}} = \left(\dot{m}_{\text{Rück}} + \dot{m}_{\text{FL}} \right) \cdot x'_{\text{LFK}} - \dot{m}_{\text{R}} \cdot x'_{\text{LFKR}} \quad (5-26) \]

\[\left(\dot{m}_{\text{Kopf}} - \dot{m}_{\text{Sumpf}} \right) \cdot y'_{\text{LFK}} = -\dot{m}_{\text{FL}} \cdot x'_{\text{LFK}} + \dot{m}_{\text{E}} \cdot x'_{\text{LFKE}} + \dot{m}_{\text{R}} \cdot x'_{\text{LFKR}} \quad (5-27) \]

\[m_{\text{F,V}} \cdot y'_{\text{LFK}} = -\dot{m}_{\text{FL}} \cdot x'_{\text{LFK}} + m_{\text{E}} \cdot x'_{\text{LFKF}} \]

Die Betriebslinie des Anreicherungsteils wird durch (5-25) und die des Abtriebsteils durch (5-26) beschrieben. Die Differenz dieser beiden Gleichungen gibt (5-27) wieder.
Bild 54: McCabe-Thiele-Diagramm

Zur Vereinfachung der Berechnung wird die Annahme getroffen, dass das Feed im Siedezustand und ausschließlich flüssig zugeführt wird. Dadurch lässt sich der Zustand mathematisch durch eine Senkrechte beschreiben. Die beiden Bilanzgeraden (5-25) und (5-26) schneiden sich im x-Wert der Feedzusammensetzung. Der zur Beschreibung des Knickpunktes gesuchte Ordinatenwert wird durch Einsetzen von $x_{Knick} = x_{LFK,F}$ in die Gleichung der Bilanzgerade des Anreicherungsteils (5-25) gewonnen, die umgeformt Gleichung (5-29) ergibt.

$$y_{Knick} = \frac{\dot{m}_{Rück} \cdot x_{LFK,F} + \dot{m}_{LFK,E} \cdot x_{LFK,E}}{m_E + m_R}$$ \hspace{1cm} (5-29)$$

Die Bestimmung der Stufenzahl kann generell sowohl vom Kolonnenkopf als auch vom Kolonnensumpf beginnen. In dieser Herleitung erfolgt sie vom Abreicherungsteil mit $x_{LFK,R}$ ausgehend. Durch abwechselnde Berechnung von y_{LFK} mit Gleichung (5-1), das entspricht einer Vertikalen nach oben bis zur Gleichgewichtslinie, und der nach x_{LFK} aufgelösten Gleichung der Betriebslinie des Abreicherungsteils (5-30), einer Horizontalen nach rechts bis zur Arbeitsgeraden entsprechend, erfolgt die Stufenkonstruktion. Solange die Stufenkonstruktion im Abreicherungsteil erfolgt, also $x_{LFK,R} \leq x_{LFK} < x_{LFK,F}$ gilt, wird (5-30) angewendet.

$$x_{LFK} = y_{LFK} \cdot \frac{\dot{m}_{Kopf}}{\dot{m}_{Rück}} - \frac{x_{LFK,R} \cdot \dot{m}_{R}}{\dot{m}_{Rück} + \dot{m}_{E}}$$ \hspace{1cm} (5-30)$$

Im Anreicherungsteil, für $x_{LFK,F} \leq x_{LFK} < x_{LFK,E}$, wird (5-31) verwendet.

$$x_{LFK} = y_{LFK} \cdot \frac{\dot{m}_{Kopf}}{\dot{m}_{Rück}} - \frac{x_{LFK,E} \cdot \dot{m}_{E}}{\dot{m}_{Rück}}$$ \hspace{1cm} (5-31)$$
Da die letzte Stufe \(j \), die \(x_{\text{LFK,E}} \) überschreitet, in der Regel keine ganze ist, wird ihr Wert anteilmäßig mit (5-32) berechnet.

\[
\text{Stufe}_j = \frac{x_{\text{LFK,E}} - x_{\text{LFK,j-1}}}{x_{\text{LFK,j}} - x_{\text{LFK,j-1}}}
\tag{5-32}
\]

Von Fenske gibt es eine Abschätzungsmethode, nach der die minimale Stufenzahl berechnet wird. Ausgehend vom totalen Rücklauf wird (5-33) angewandt, wobei der mittlere Trennfaktor nach (5-34) berechnet wird.

\[
n_{\text{min}} = \frac{\log\left(\frac{x_{\text{LFK,E}}}{1-x_{\text{LFK,E}}} \cdot \left(\frac{1-x_{\text{LFK,R}}}{x_{\text{LFK,R}}}
ight)\right)}{\log \alpha(x_{\text{LFK}})}
\tag{5-33}
\]

\[
\overline{\alpha}(x_{\text{LFK}}) = \left[\prod_{i=1}^{n} \alpha(x_{\text{LFK},i})\right]^{-1}
\tag{5-34}
\]

In unserem Fall wird seitens des Programmes der Bereich von \(x_{\text{LFK,R}} \leq x_{\text{LFK}} \leq x_{\text{LFK,E}} \) in 10 äquidistante Bereiche aufgeteilt, aus deren Trennfaktoren der Mittelwert nach (5-34) bestimmt wird.

Minimales Rücklaufverhältnis

Mit Gleichung (5-18) lässt sich die Beziehung der Geradengleichung des Anreicherungsteils (5-25) umformen zu (5-35).

\[
y_{\text{LFK}} = x_{\text{LFK}} \cdot \frac{v}{v+1} + \frac{x_{\text{LFK,E}}}{v+1}
\tag{5-35}
\]

Für \(x_{\text{LFK}} = x_{\text{LFK,F}} \) und \(y_{\text{LFK}} = y_{\text{LFK}}(x_{\text{LFK,F}}) \) wird das minimale Rücklaufverhältnis nach (5-36) bestimmt.

\[
v_{\text{min}} = \frac{x_{\text{LFK,E}} - y_{\text{LFK}}(x_{\text{LFK,F}})}{y_{\text{LFK}}(x_{\text{LFK,F}}) - x_{\text{LFK,F}}}
\tag{5-36}
\]

Diese Gleichung lässt sich zu der von Underwood entwickelten Funktion (5-37) weiter umformen.

\[
v_{\text{min}} = \frac{1}{\alpha(x_{\text{LFK,F}}) - 1} \left[x_{\text{LFK,E}} - \frac{\alpha(x_{\text{LFK,F}}) \cdot (1-x_{\text{LFK,E}})}{x_{\text{LFK,F}} - 1} \right]
\tag{5-37}
\]
5.1.3.2 Konstruktion im Gibbs’schen Dreiecksdiagramm

Für den Fall, dass das Lösemittel und die schwerflüchtige Komponente des zu trennenden Ausgangsmaterials beachtenswert mischbar sind, kann die Bestimmung der theoretischen Trennstufen nicht mehr auf pseudobinärer Basis erfolgen. Der Einfluss der Zusammensetzung der schwerflüchtigen Mischung auf die Löslichkeit wird in dem in Kapitel 4.1.1.1 anhand von Bild 16 erklärten Gibbs’schen Dreiecksdiagramm berücksichtigt. Eine detaillierte Beschreibung über die Darstellung einer Gegenstromextraktion im Dreiecksdiagramm liefert Sattler [115].

Im Fall der Gasextraktion ist die Verwendung dieses Diagrammes wegen der geringen Löslichkeit der schwerflüchtigen Mischung in der Gasphase problematisch. Die Binodal-kurve liegt, wie in Kapitel 4.3.3.2 in Bild 31 und Bild 32 dargestellt, sehr nahe in der Ecke des Lösemittels, und so treten bei der grafischen Analyse größere Ungenauigkeiten auf. Daher wird oft die nachfolgend erläuterte Darstellungsweise von Jänecke bevorzugt.

Bild 55: Gibb’sches Dreiecksdiagramm
5.1.3.3 Konstruktion im Jänecke-Diagramm

$$N_{pol,E} = x_{LME} \cdot \frac{\dot{m}_E}{m_E} \quad (5-38)$$

Wird ohne Rücklauf gefahren, so nimmt der Ordinatenwert nach (5-39) gerade die Größe der Beladung N_E am Kolonnenkopf an.

$$N_{pol,E} = N_E \left(x'_{LFK,E} \right) \quad (5-39)$$
Die Berechnung des Polpunktes der Raffinatseite erfolgt mittels einer Geraden durch den Feedpunkt bis zum Wert \(x_{\text{LFK},R} \)

\[
N_{\text{Feed}} = \frac{m_{\text{MF}}}{m_{\text{F}}} \tag{5-40}
\]

\[
m_{\text{pol}} = \frac{N_{\text{Pol},E} - N_{\text{Feed}}}{x_{\text{LFK},E} - x_{\text{LFK},F}} \tag{5-41}
\]

\[
N_{\text{Pol},R} = m_{\text{pol}} \cdot (x_{\text{LFK},R} - x_{\text{LFK},F}) + N_{\text{Feed}} \tag{5-42}
\]

Die Koordinaten der Polpunkte sind für die Extraktseite \(\text{Pol}_E = (x_{\text{LFK},E}, N_{\text{Pol},E}) \) und für die Raffinatseite \(\text{Pol}_R = (x_{\text{LFK},R}, N_{\text{Pol},R}) \). Ausgehend von der Extraktseite (generell kann mit der Berechnung auch raffinatseitig begonnen werden) berechnet das verwendete Programm zu dem Punkt \((y_{\text{LFK},E}, N_E(y_{\text{LFK},E})) \) den zugehörigen Gleichgewichtspunkt. Unter Vorgabe von \(y_{\text{LFK}} \) und \(\alpha(x_{\text{LFK}}) \) wird solange nach einem Wert für \(x_{\text{LFK}} \) gesucht, bis Gleichung (5-1) mit ausreichender Genauigkeit erfüllt wird. Dieses Vorgehen entspricht dem Einzeichnen der Konode zwischen den beiden Beladungskurven. Nun wird \((x_{\text{LFK},E}, N_{\text{Pol},E}(x_{\text{LFK},E})) \) mit dem Polpunkt \(\text{Pol}_E \) verbunden und der Schnittpunkt mit \(N_E \) durch Iteration ermittelt. Dieses Vorgehen wird solange wiederholt, bis \(x_{\text{LFK}} \) den Wert vom Feed unterschreitet. Dann wird dieser \(x_{\text{LFK}} \)-Wert mit dem Polpunkt \(\text{Pol}_R \) verbunden und die Konstruktion analog zu oben fortgesetzt, bis der Wert des Raffinats erreicht ist. Die letzte Stufe wird wie in (5-32) anteilmäßig berechnet.

5.1.3.4 Simulation mit ASPEN PLUS

Durch die Vorgabe von konzentrationsabhängigen Verteilungskoeffizienten werden in einer bestimmten Sequenz für jeden Zwei-Phasen-Flash Phasengleichgewichtsberechnungen
durchgeführt und jeweils eine austretende Gas- und Flüssigphase berechnet. Die Berechnungen werden iterativ solange durchgeführt, bis die Massenbilanz der gesamten Verschaltung aufgeht. Da der simulierte Prozess als isotherm und isobar betrachtet wird, vereinfachen sich die notwendigen Berechnungen.

5.1.4 Konzept der kontinuierlichen Konzentrationsänderung

Der Vollständigkeit halber soll noch das Konzept der kontinuierlichen Konzentrationsänderung vorgestellt werden. Die trenntechnische Untersuchung eines realen, komplexen Stoffgemisches erfordert einen deutlich höheren Rechenaufwand als für die in Kapitel 5.1.3 geschilderten Methoden. Es müssen Stoff- und Wärmeübergänge in Richtung beider Phasen berücksichtigt werden, was zu einem nichtlinearen Gleichungssystem führt. Als Ergebnis wird nach Chilton und Colburn [26] die Anzahl der Übertragungseinheiten (Number of Transfer Units, NTU) und deren Höhe (Height of Transfer Unit, HTU) gewonnen. Die Berechnungen werden sowohl für die Gas- als auch für die Flüssigphase durchgeführt und liefern nicht notwendigerweise gleiche Ergebnisse. Diese Vorgehensweise wird als NTU-HTU-Methode bezeichnet.

5.1.5 Fluiddynamik

maximaler Stoffaustausch auftritt [56]. Basierend auf Untersuchungen von Sherwood et al. [121] definiert Billet [9] den Kapazitätsfaktor¹ F'_V nach (5-43) und den Flussparameter² Ψ nach (5-44).

\[
F'_V = \frac{u_V \cdot \sqrt{\rho_V}}{\sqrt{\rho_L - \rho_V}} \quad (5-43)
\]

\[
\Psi = \frac{m_L}{m_V} \cdot \frac{\sqrt{\rho_V}}{\sqrt{\rho_L}} \quad (5-44)
\]

Bild 57: Flutpunktdiagramm nach Billet [9]

Die zur Berechnung des Kapazitätsfaktors und Flussparameters notwendigen Dichten der koexistierenden Phasen lassen sich experimentell bestimmen. Die Massenströme und Leerrohrgeschwindigkeit werden berechnet. Für die Fluidströme in der Kolonne gelten für Versuche ohne Rücklauf die Beziehungen (5-45) bis (5-47).

\[
m_L = (\bar{m}_F - \bar{m}_V \cdot (1 - y_{CO_2})) \cdot \frac{1}{1 - x_{CO_2}} \quad (5-45)
\]

¹ auch als Gasbelastungsfaktor bezeichnet
² auch als Strömungsparameter bezeichnet

\[
\dot{m}_v = \left(\dot{m}_{CO_2} - \dot{m}_L \cdot x_{CO_2} \right) \cdot \frac{1}{y_{CO_2}} \tag{5-46}
\]

\[
\dot{m}_F + \dot{m}_{CO_2} = \dot{m}_L + \dot{m}_v \tag{5-47}
\]

\[
\dot{m}_L = \frac{1}{1-x_{CO_2}} - \left(\dot{m}_F + \dot{m}_{CO_2} \right) \cdot \frac{1-y_{CO_2}}{1-x_{CO_2}} \tag{5-48}
\]

\[
u_v = \frac{\dot{m}_v}{\frac{\pi}{4} \cdot d_{i,\text{Kolonne}}^2 \cdot \rho_v} \tag{5-49}
\]

In Gegenstromtrennungen mit überkritischem CO₂ als Extraktionsmittel wird gewöhnlich mit hohen Lösemittelverhältnissen von weit über 10 kg Lösemittel pro kg Feed gearbeitet. Dieses hohe Lösemittelverhältnis resultiert in einem unvollständigen Benetzungsgrad der Packung mit Flüssigphase und führt dadurch zu einem geringeren Stofftransport.

5.2 Trenntechnische Analyse zur Festlegung des Versuchsprogramms

Vor der Durchführung von Experimenten mit der Gegenstromextraktionskolonne zur Auftrennung von rohem Palmöl und FAME / β-Carotin wird eine trenntechnische Analyse durchgeführt. Unter Berücksichtigung der fluidodynamischen Eigenschaften werden auf theoretischem Wege Prozessbedingungen bestimmt, die zur gewünschten Trennung führen sollen.

5.2.1 Trenntechnische Analyse zur Fraktionierung von rohem Palmöl

Hydrodynamik vom Stoffsystem rohes Palmöl / CO₂

die Trennversuche und somit auch die trenntechnische Analyse nicht für die gleichen Temperaturen, für die Machado [75] seine Messungen durchgeführt hat, erfolgen sollen, müssen die Dichten mittels linearer Interpolation aus den Messwerten bestimmt werden. Die Interpolationsergebnisse dienen ihrerseits zur Ermittlung von Ausgleichsfunktionen.

Die Dichtedifferenz der koexistierenden Phasen ist wichtiger als deren Absolutwerte, weil sie das Flutverhalten der Kolonne beeinflusst. Um eine problemlose Phasentrennung zu gewährleisten, sollte die Differenz einen Wert von 150 kg/m³ nicht unterschreiten. Da diese Anforderung im untersuchten Druckbereich von 20 bis 30 MPa für eine Temperatur von 310 K nicht erfüllt wird, werden die Trennversuche in der Gegenstromkolonne nicht für diese Temperatur durchgeführt.

In Bild 59 ist die Dichtedifferenz der beiden koexistierenden Phasen des Stoffsystems CPO und CO₂ über dem Druck aufgetragen. Es ist zu erkennen, dass für 340 K die erforderliche Dichtedifferenz von 150 kg/m³ für einen Druck oberhalb von 23 MPa nicht mehr eingehalten wird. Dieser Bereich kann und soll bei den nachfolgenden Untersuchungen ausgeschlossen werden.
Bild 59: Dichtedifferenz der koexistierenden Phasen von CPO und CO₂

Trenntechnische Versuchsplanung für CPO / CO₂

In Bild 60 sind die Ergebnisse der trenntechnischen Analyse für die nach den hydrodynamischen Vorüberlegungen als sinnvoll erachteten Druck- und Temperaturbereiche dargestellt. Zur Berechnung werden die in Tabelle 24 aufgelisteten Parameter verwendet, und es wird angenommen, dass ein Ausgangsmaterial mit 4,6 Ma% leichtflüchtigen Komponenten in ein LFK-reiches Extrak (95 Ma% LFK) und ein LFK-armes Raffinat (0,1 Ma% LFK) aufgetrennt wird.
Über dem Rücklaufverhältnis sind in Bild 60 zwei verschiedene Größen aufgetragen. Die durchgezogenen Kurven gehören zur linken Skala und stellen die nach der Jänecke-Methode bestimmte Anzahl theoretischer Trennstufen \(n_{\text{th, Jänecke}} \) dar. Die gestrichelten Geraden repräsentieren das Lösemittelverhältnis (LMV) als das Massenverhältnis vom Extraktionsmittel zum Feedmaterial. Der qualitative Einfluss des Rücklaufverhältnisses auf \(n_{\text{th}} \) und LMV verhält sich entgegengesetzt. Während die Anzahl der theoretischen Trennstufen mit steigendem Rücklaufverhältnis sinkt, nimmt das Lösemittelverhältnis zu. Da Trennungen aus wirtschaftlichen Gründen mit möglichst wenigen Trennstufen (kurze Kolonne) und geringem Lösemittelverhältnis (geringere Kompressionsenergie, kleinere Aggregate, ...) durchgeführt werden sollen, muss hinsichtlich dieser beiden Größen ein Kompromiss gefunden werden.

Eine Auftragung wie in obiger Abbildung ist notwendig, um den komplexen Zusammenhang von Kapazität und Selektivität in Abhängigkeit von Druck und Temperatur richtig bewerten zu können. Wie bereits in 4.3.1.2 ausführlich dargelegt, bewirkt eine geringe Dichte des Extraktionsmittels eine hohe Selektivität bei gleichzeitig geringer Kapazität, und eine hohe Dichte resultiert in einer geringen Selektivität bei hoher Kapazität. Die trenntechnische Analyse liefert a priori eine Abschätzung, in welchen Druck- und Temperaturbereichen ein optimaler Betrieb möglich ist. Beispielsweise sind für 20 MPa und

Bild 60: Trenntechnische Analyse zur Trennung von CPO

5.2.2 Trenntechnische Analyse zur Anreicherung von β-Carotin

Für geringe Gasdichten weisen die Trennfaktoren von FAME und β-Carotin sehr hohe Werte über 100 auf. Wird der Trennfaktor als konstant (konzentrationsunabhängig) angenommen, so lässt sich bereits mit geringem Rücklauf in nur 2 Gleichgewichtsstufen ein Ausgangsmaterial von 500 ppm β-Carotin in ein Extrakt mit 10 ppm und ein Raffinat mit 10 % β-Carotin auftrennen. Da in einem derart großen Konzentrationsbereich jedoch nicht von konstanten Trennfaktoren ausgegangen werden kann und auch keine weiteren Messwerte zur Verfügung stehen, wird die trenntechnische Analyse ausschließlich für den Bereich höherer Gasdichten und somit kleinerer Trennfaktoren durchgeführt. Die Trennfaktoren erwiesen sich bei den in 4.3.3.2, Bild 38, beschriebenen Phasengleichgewichtsmessungen im untersuchten Konzentrationsbereich als nahezu konzentrationsunabhängig.

In Bild 61 sind die Anzahl der theoretischen Trennstufen n_{th} und das Lösemittelverhältnis LMV über dem Rücklaufverhältnis aufgetragen. Zur Berechnung werden die in Tabelle 25 aufgelisteten Parameter verwendet, und es wird angenommen, dass die als Ausgangsmaterial verwendeten Fettsäuremethylester (FAME) mit 500 ppm β-Carotin in ein β-Carotin armes Extrakt (10 ppm) und ein β-Carotin reiches Raffinat (10 000 ppm) aufgetrennt werden. Im Vergleich zur Auftragung in Bild 60 liegen die Werte von ν für das Stoffsystem FAME / β-Carotin / CO₂ um eine Größenordnung tiefer als für CPO / CO₂. Für alle untersuchten Zustände lässt sich mit einem entsprechend hohen Rücklaufverhältnis für n_{th} ein Wert zwischen 3 und 6 erreichen. Dabei sind jedoch aus trenntechnischer Sicht nicht alle Bedingungen gleich gut geeignet.
Für 12,5 MPa / 320 K, 17,5 MPa / 340 K und 20 MPa / 360 K ergibt sich zwar eine geringe Anzahl theoretischer Trennstufen, aber das erforderliche Lösemittelverhältnis ist relativ hoch. Für 20 MPa / 340 K befindet sich das LMV auf gleichem Niveau wie für 15 MPa / 320 K, aber \(n_{th} \) liegt deutlich höher. Die Betrachtung von 22,5 MPa / 360 K zeigt, dass bei einem Rücklaufverhältnis oberhalb von 1,5 die Anzahl der theoretischen Trennstufen \(n_{th} \) mit den Werten von 15 MPa / 320 K übereinstimmt, jedoch liegt das Lösemittelverhältnis etwa um den Faktor 2 höher. Ergebnis dieser Voruntersuchung aus trenntechnischer Sicht ist, dass von den betrachteten Bedingungen das Wertepaar 15 MPa / 320 K die besten Trennergebnisse verspricht.

5.3 Beschreibung der Extraktionsapparaturen

Die im Rahmen dieser Untersuchungen genutzten Anlagen werden in diesem Abschnitt erklärt. Sowohl auf deren Aufbau als auch auf die Versuchsdurchführung wird für die Bereiche der Kolonnenversuche, Trennungen mit der Mixer-Settler-Apparatur und Alkoholyse von Fetten eingegangen.

Hinter der CO\(_2\)-Versorgung einer jeden Anlage befindet sich ein Filter bzw. eine Reinigungspatrone, um den Sauerstoffgehalt des Kohlendioxids zu minimieren, weil bei der SFE von Vitaminen oder anderen sauerstoffempfindlichen Produkten mit überkritischen Gasen bereits bei kleinen Verunreinigungen große Vitaminverluste auftreten [27], [23].
5.3.1 SFE-Kolonne

5.3.1.1 Aufbau der SFE-Kolonne

Die Extraktionsversuche werden mit der in Bild 62 dargestellten SFE-Gegenstromanlage, deren Komponenten einen Betrieb bis 30,5 MPa für 383 K ermöglichen, durchgeführt. Kernstück der Apparatur ist der aus Edelstahlhochdruckrohren\(^1\) bestehende 7 000 mm lange Kolonnenkörper mit einem Außendurchmesser von 25,4 mm und einem Innendurchmesser von 17,5 mm. Ein zweigeteilter Bereich von insgesamt 6 000 mm Länge ist mit Sulzer EX Gewebendrahtpackung\(^2\) versehen. Das in einem skalierten, beheizbaren Doppelmantel-Glasbehälter vorgelegte Feedmaterial kann mittels einer beheizbaren Kolbenspeisepumpe\(^3\) in drei verschiedenen Höhen der Kolonne zugeführt werden. Die Bestimmung des Massenflusses erfolgt durch Umrechnung der Volumenabnahme im Vorlagebehälter bei bekannter Flüssigkeitsdichte. Durch die verschiedenen Zugabestellen ist ein Betrieb im Gleichstrom sowie im Gegenstrom ohne Rücklauf und mit Rücklauf möglich. Im Fall des Gegenstrombetriebes mit Rückfluss ist die mittlere Feedzugabestelle so angeordnet, dass die Anreicherungszone 2 m und die Abreicherungszone 4 m beträgt. An den Kolonnenenden befinden sich Zonen von jeweils 500 mm ohne Packung. Sie dienen im Kopf als Zone zur Phasentrennung, falls vom Extraktionsmittel Flüssigkeitströpfchen mitgerissen werden, und im Sumpf als Sammelbehälter. 3 Sichtzellen\(^4\) ermöglichen im Kolonnensumpf und im Abscheider das Ablesen des Füllstandes sowie in der Mitte der Kolonne die Beobachtung des Strömungszustandes.

Bild 62: Skizze der Gegenstromextraktionskolonne

\(^1\) Autoclave Engineers, Schmidt, Kranz & Co., Velbert
\(^2\) Sulzer Chemtech AG, Winterthur, Schweiz
\(^3\) Bran & Lübbe, Norderstedt
\(^4\) Nova Swiss Deutschland, Düsseldorf

Wegen der Untersuchung eines bei Umgebungstemperatur festen Ausgangsmaterials (CPO) wurden die gesamten Anlagenkomponenten mit separaten Heizeinrichtungen versehen. Die Temperatur im Inneren der Anlagenkomponenten (Vorwärmer, Abscheider, Filter, Puffer, Rücklaufleitung) wird mit den bereits erwähnten Ni-CrNi-Thermoelementen aufgenommen. Die Temperatur aller übrigen Leitungen wird mittels PT 100-Fühlern bestimmt. Über einen PC erfolgen die Messdatenerfassung und der größte Teil der Regelung.

\(^1\) Andreas Hofer, Mühlheim / Ruhr
\(^2\) Host GmbH, Lorsch
\(^3\) Wika, Klingenberg
\(^4\) ABB Metrawatt, Nürnberg
\(^5\) Kämmer, Essen
\(^6\) Abscheider mit 0,46 l Innenvolumen, Andreas Hofer, Mühlheim / Ruhr
\(^7\) Merck, Darmstadt
\(^8\) Rheonik Massendurchflussmessgerät, Schwing Verfahrenstechnik, Neukirchen-Vluyn
\(^9\) Lewa, Leonberg
An der zum Einsatz gekommenen SFE-Kolonne wurden bereits mit anderen Stoffsystemen und teilweise auch anderen Füllkörpern Extraktionsversuche durchgeführt. Gottschau [45] und Saure [116] untersuchten die Anreicherung von Tocopherolen bzw. Squalen aus Dämpferdestillaten. Mit einer Packung aus Drahtwendeln (3 x 3 mm / 5 x 5 mm) respektive einer Sulzer EX Gewebedrahtpackung erreichten beide bis zu 8 theoretische Trennstufen. Dabei fuhr Gottschau [45] 70 ... 180 g/h Feed im Gegenstrom zu 1 ... 5 kg/h CO₂ und Saure [116] 40 ...150 g/h Feed im Gegenstrom zu 4 ... 7 kg/h CO₂. Die daraus resultierenden Belastungen belaufen sich für die auch in diesen Untersuchungen verwendete Gewebedrahtpackung auf 170 ... 620 kg Feed pro (m² · h) bzw. 17 000 ... 29 000 kg CO₂ pro (m² · h). Innerhalb dieser Größenordnung liegen auch die Belastungen bei unseren Untersuchungen.

5.3.1.2 Durchführung von Gegenstromtrennexperimenten mit der SFE-Kolonne

5.3.2 Mixer-Settler-Apparatur

5.3.2.1 Aufbau der Mixer-Settler-Apparatur

Funktionsprinzip

Bild 63: Schema der Mixer-Settler-Apparatur

Die gesamte Anlage kann temperiert werden. Die Mixer-Settler-Einheiten befinden sich in einem speziell angefertigtem Wärmeschrank\(^7\), während die übrigen Komponenten durch Temperiergeräte oder elektrische Heizleitungen\(^8\) versorgt werden. Im kontinuierlichen Betrieb liegen die Temperaturschwankungen unterhalb 1 K.

Aufbau einer Mixer-Settler-Einheit

Jede Mixer-Settler-Einheit erfüllt zwei Aufgaben. Die erste ist die Durchmischung der flüssigen und überkritischen Phase, möglichst bis zum Erreichen des Phasengleichgewichtes. Die zweite Funktion ist die anschließende Trennung der beiden

\(^1\) Präparative HPLC-Doppelkolbenpumpe Typ HD-200, Firma Labomatic AG, Allschwil
\(^2\) Rohrbündelwärmetauscher 1 m\(^2\) Austauschfläche, Fa. Jäggi AG, Bern
\(^3\) Membranpumpe Typ G3H, Fa. Herbert Ott AG, Basel
\(^4\) Spiralwärmetauscher 0,2 m\(^2\) Austauschfläche, Hanag AG, Oberwil
\(^5\) sämtliche Temperiergeräte stammen von der Tool-Temp AG, Romanshorn
\(^6\) Rohrbündelwärmetauscher 0,5 m\(^2\) Austauschfläche, Fa. Jäggi AG, Bern
\(^7\) Fa. Heraeus, Hanau
\(^8\) Horst GmbH, Lorsch
Phasen. Der Aufbau einer Einheit ist in Bild 64 dargestellt. Bezeichnen wir diese Einheit als Stufe n, so wird die Flüssigphase mittels einer Zahnradpumpe1 von der Stufe n-1 zu einer Seitenkanalpumpe2 gefördert. Vor der Seitenkanalpumpe vereinigt sich der Flüssigkeitsstrom mit dem Lösemittelstrom der Stufe n+1. Die Seitenkanalpumpe ist in der Lage, ein Zweiphasengemisch zu fördern und gleichzeitig eine große Stoffaustauschoberfläche zu schaffen. Diese Pumpe bildet zusammen mit dem Verweilzeitrohr (Diffusor) die Mixer-Einheit, in der sich das Phasengleichgewicht einstellen soll. Im nachgeschalteten Zyklon erfolgt die Phasentrennung. Die sich im Bunker ansammelnde Flüssigphase wird zur Stufe n+1 gepumpt, während das Lösemittel über den Kopf abgezogen und der Stufe n-1 zugeführt wird. Durch ein im Oberlauf des Zyklons befindliches Sichtfenster kann visuell geprüft werden, ob Flüssigkeitströpfchen mit der Gasphase mitgerissen werden.

Wie Bild 64 zu entnehmen, wird der Gegenstrom nicht durch die Dichtedifferenz der beiden Phasen, sondern durch Pumpen aufrechterhalten. Dieses Vorgehen erfordert zwar einen höheren apparativen Aufwand, erlaubt aber eine Prozessführung bei geringen Dichtedifferenzen. Bei insgesamt höherer Dichte für das überkritische Lösemittel resultiert daraus ein erhöhtes Lösungsvermögen, so dass dadurch die Lösemittelmenge und mit ihr die Anlagengröße gesenkt werden können.

Messtechnik und Automation

Die Anlage ist nahezu vollständig automatisiert. Sie wird durch 2 Prozessrechner geregelt. Zur Visualisierung dient ein auf einem PC befindliches Prozessleitsystem3. Als Messgrößen werden Temperatur4, Druck1, Massenflüsse2 und Füllstände3 erfasst und zur Regelung des Prozesses weiterverarbeitet.

1 Fa. Ismatec AG, Zürich
2 Eigenbau der F. Hoffmann-La Roche AG (30 MPa bei 423 K)
3 Prozessrechner T100 und Prozessleitsystem T3500 von Eurotherm
4 NiCr-Ni Mantelthermoelemente Typ J der Firma Balzer AG, Dornach
5.3.2.2 Durchführung von Trennexperimenten mit der Mixer-Settler-Apparatur

Für den Fall, dass der Trennversuch mit Rücklauf durchgeführt werden soll, ist die Rücklaufpumpe einzuschalten, sobald sich eine Flüssigkeitsphase im Extraktabscheider angesammelt hat. Die Einstellung des Rücklauflaunststromes wird direkt an der HPLC-Pumpe vorgenommen und anhand eines in die Rücklaufleitung geschalteten Massendurchflussmessgerätes vom Typ RHE der Fa. Remag, Bern und kapazitiven Füllstandsensor der Fa. Aquasant, Bubendorf.
flussmessgerätes kontrolliert. Der Austrag des Extraktes aus dem Extraktabscheider erfolgt wiederum automatisch durch Vorgabe einer Füllstandhöhe im Bunker des Abscheiders.

Bereits 35 bis 40 Minuten nach Einschalten des Rücklaufes wird in der Mixer-Settler-Apparatur ein stationärer Betriebszustand erreicht [100], was im Vergleich zu den in der Gegenstromkolonne benötigten 3 Stunden [116] relativ kurz ist. Durch diese kurze Anpassungszeit ist es möglich, innerhalb eines Versuchstages viele Betriebszustände zu untersuchen, ein Vorteil, der insbesondere bei der Pilotierung von Anlagen ein großer Vorteil ist.

5.4 Experimentelle Ergebnisse der Trennversuche

Im Anschluss an die erste Trennstufe wird das aus Triglyceriden und β-Carotin bestehende Sumpfprodukt einer Alkoholyse mit Methanol unterzogen. In einem zweiten Schritt werden die entstandenen, leichtflüchtigen Fettsäuremethylester (Biodiesel) mittels Gegenstrom-SFE vom schwerflüchtigen β-Carotin abgetrennt. Die Ergebnisse der in einer Kolonne durchgeführten Trennschritte sowie der Veresterungsreaktion werden in den folgenden beiden Kapiteln beschrieben.

5.4.1 Kolonnenversuche

![Bild 66: Flutpunktdiagramm](image-url)
1. Trennstufe: Abtrennung von freien Fettsäuren und Tocochromanolen

Zur Darstellung des Einflusses von Lösemittel- und Feedstrom auf die Kolonnenprodukte erfolgt in Bild 67 die Auftragung der Extrakt- und Raffinatzusammensetzung über dem Lösemittelverhältnis LMV. Mit zunehmendem Lösemittelverhältnis sinkt die Konzentration an leichtflüchtigen Komponenten sowohl im Extrakt als auch im Raffinat. Die Abnahme im Raffinat von 1,9 auf 0,8 Ma% erfolgt wegen der verstärkten Extraktion der LFK durch die gestiegene Lösemittelmenge. Als Folge der Abreicherung der LFK im Raffinat werden vom Lösemittel auch zunehmend schwerflüchtige Komponenten extrahiert, und der Anteil freier Fettsäuren im Kopfprodukt sinkt von 40 auf 27 Ma%.

Unter Verwendung eines Rückflusses und anderer Lösemittelverhältnisse kann die Qualität der Kolonnenprodukte gesteigert werden. So werden in weiteren Trennversuchen Extrakte mit einem Fettsäuregehalt von 48 Ma% und 3 200 ppm Tocochromanolen gewonnen. Der
Carotingehalt liegt unter 10 ppm. Ferner sind noch Triglyceride und andere Spurenstoffe, die im Ausgangsmaterial teilweise unterhalb der Nachweisgrenze lagen, im Kopfprodukt nun in messbarer Konzentration enthalten. Das Raffinat kann bis auf 0,2 Ma% LFK gereinigt werden, und das β-Carotin liegt in seiner Ausgangskonzentration von rund 400 ppm vor. Eine ausführliche trenntechnische Betrachtung mit der Berechnung der Stufenhöhen erfolgt in Kapitel 5.5.1.

2. Trennstufe: Anreicherung von β-Carotin

In der zweiten Trennstufe werden die durch Alkoholyse (Kapitel 5.4.2) entstandenen Fettsäuremethylester im Kopf der SFE-Kolonne, bei gleichzeitiger Anreicherung von β-Carotin im Sumpf, abgetrennt. Die Trennexperimente sollen unter den in der trenntechnischen Voruntersuchung ermittelten Bedingungen von 15 MPa und 320 K durchgeführt werden.
In Bild 68 sind die für die Trennung berechneten Stoffströme und Konzentrationen angegeben. Ein Strom von 200 g / h einer Mischung aus Fettsäuremethylestern und 500 ppm Carotin wird mit 2 kg CO₂ pro Stunde im Gegenstrom extrahiert. Unter Vorgabe des Trennfaktors und der Beladungen (Tabelle 25) sowie der Zusammensetzung von Extrakt (10 ppm β-Carotin) und Raffinat (10 000 ppm β-Carotin) werden für 320 K und 15 MPa die angegebenen Stoffströme berechnet.

Weil das Ausgangsmaterial nahezu vollständig aus FAME besteht, ist das für eine Anreicherung des β-Carotins erforderliche Schnittverhältnis sehr groß. Durch das extreme Schnittverhältnis besitzt der Prozess bei Schwankungen der Massenströme eine hohe Sensitivität. Bereits geringe Abweichungen des Rückfluss- bzw. Feedstromes von 10 g / h (5 %) oder des CO₂-Stromes von 60 g / h (3 %) führen zu gravierenden Auswirkungen auf die Trennung. Steigt der Flüssigkeitsstrom um den genannten Wert an oder fällt der Extraktionsmittelstrom ab, so halbiert sich bei sonst gleichen Bedingungen die Carotinkonzentration des Raffinats. Verhalten sich die Schwanken der Massenströme umgekehrt, wird das gesamte Feedmaterial extrahiert, der Raffinatstrom sinkt gegen Null, und festes Carotin scheidet sich innerhalb der Kolonne ab. Die Regelung der in diesen Untersuchungen verwendeten Extraktionskolonne arbeitet für eine starke Anreicherung des Carotins wahrscheinlich nicht ausreichend genau.

Die mit einer Modellmischung von mit 500 ppm β-Carotin versetzten Methylestern durchgeführten Trennversuche bestätigen die im Vorfeld der Untersuchungen aufgedeckte Problematik. In sämtlichen Versuchen, die mit Rücklauf gefahren werden, wird zwar ein absolut klares Kopfprodukt, in dem β-Carotin nicht mehr nachgewiesen werden kann, gewonnen, aber die Anreicherung des β-Carotins im Sumpf gelingt im stationären Betrieb allenfalls um den Faktor 3 (durchschnittlich 1 400 ppm). Versuche, eine höhere Aufkonzentrierung zu erreichen, führten unerwünschter Weise stets zur vollständigen Extraktion des gesamten Feedmaterials.
5.4.2 Alkoholyse des mittels SFE raffinierten Palmöles

Alkoholyse von Fetten bezeichnet die Umsetzung von Triglyceriden mit Alkoholen zu Fettsäurealkylestern und Glycerin nach folgender Reaktionsgleichung:

\[
\text{Triglycerid + 3 Alkohol} \rightarrow 3 \text{ Alkoholethylester + Glycerin}
\]

5.4.3 Trennung von rohem Palmöl in der Mixer-Settler-Apparatur

Die Mixer-Settler-Apparatur war wegen ihrer Eignung zur Verarbeitung stark viskoser Flüssigkeiten und wegen ihres hohen Lösemmitteldurchsatzes für die Entsäuerung des rohen Palmöles und Aufkonzentrierung der Tocochromanole vorgesehen. Nach dem Aufbau der Anlage folgte die Inbetriebnahme mit CPO. Durch die Implementierung von Probenahmestellen in jedem Trennmodul besteht die Möglichkeit, das Verteilungsgleichgewicht in einer einzelnen Mixer-Settler-Einheit sowie das Konzentrationsprofil der gesamten Trennbatterie zu ermitteln.

![Bild 70: Wirkungsgrade der Mixer-Settler-Einheiten](image-url)

5.5 Ergebnis, trenntechnische Analyse und Bewertung der Trennung

5.5.1 Auftrennung von rohem Palmöl

In Kolonnenversuchen wurde rohes Palmöl unter verschiedenen Bedingungen hinsichtlich Temperatur, Druck, Lösemittel- und Rücklaufverhältnis fraktioniert. Es gelang die Entsäuerung bis auf einen Restgehalt von 0,2 Ma% freier Fettsäuren im Raffinat, ohne dass der Carotingehalt nennenswert verändert wurde. Das Extrakt war mit bis zu 48 Ma% freier Fettsäuren und 3 200 ppm Tocochromanolen angereichert, und der Carotingehalt lag unter 10 ppm.

Aus den in den Kolonnenversuchen gesammelten Erfahrungen hinsichtlich Flutverhaltens und ausreichend hoher Beladungen sowie aus der trenntechnischen Analyse folgt, dass die Trennung bei 370 K und 30 MPa durchgeführt werden sollte. Von den untersuchten Betriebszuständen ist das der einzige, der bei einem Lösemittelverhältnis von unter 50 die geforderte Trennung erreicht. In Bild 71 sind die Anzahl der theoretischen Trennstufen und das Lösemittelverhältnis über dem Rückflussverhältnis aufgetragen. Für den Betriebszustand muss hinsichtlich eines möglichst geringen Lösemittelverhältnisses und möglichst weniger Trennstufen ein Kompromiss gefunden werden. Da das LMV mit steigendem Rückflussverhältnis linear steigt, wird anhand des Kurvenverlaufes der theoretischen Trennstufen entschieden, wann eine weitere Erhöhung des LMV keine nennenswerte Verringerung der Stufenzahlen mehr bewirkt. In Bild 71 ist dieser Bereich durch ein Rechteck kenntlich gemacht. Als ideal wird der Bereich von $\nu = 14\ldots27$ erachtet, in dem die Werte $n_{th} = 14\ldots10$ und LMV = 15...40 betragen.

![Bild 71: Betriebszustände zur Fraktionierung von CPO](image)

Trennstufen, was bei einer Packungshöhe von 6 m zu einem HETS-Wert von 1,6 m führt. Dieser Wert liegt im Bereich von 1 bis 2,5 m, den Saure [116] in Untersuchungen mit ähnlich viskosen Mischungen an derselben Kolonne ermittelt hat. Ausgehend von 10 bis 14 Trennstufen errechnet sich eine Kolonnenhöhe von 16 bis 22 Metern.

Zur Berechnung des Kolonnendurchmessers werden die in Bild 66 aufgetragenen Flutpunkte verwendet. Unter Vorgabe des in Trennexperimenten mit 3,0 kg/h als maximal bestimmten CO₂-Stromes ist der Wert für den Kapazitätsfaktor \(F'_V = 0,011 \text{ m} / \text{s} \). Aus dem Flutpunktdiagramm wird der entsprechende Flussparameter von \(\Psi = 0,035 \) abgelesen. Aus Sicherheitsgründen wird mit \(\Psi = 0,032 \) gerechnet und ein Feedmassenstrom von 80 g/h berechnet. Bei dem gegebenen Kolonnendurchmesser von 17,5 mm entsprechen diese Massenströme einer Querschnittsbelastung von 12 500 kg/(m² · h) für CO₂ bzw. 330 kg/(m² · h) für rohes Palmöl. Der Öldurchsatz ist relativ gering. Deshalb sollte für den Fall einer industriellen Anwendung eine andere Packung verwendet werden.

Das entstehende Extrakt besteht zu 95 Ma% aus den leichtflüchtigen Komponenten freie Fettsäuren und Tocochromanole und entspricht somit in seiner Zusammensetzung dem von Machado [74] verwendeten Palmöldämpferdestillat. In seinen Untersuchungen gelang die Anreicherung der Tocochromanole aus einer derartigen Mischung bis zu einer Konzentration von 17 Ma%. In diesen Untersuchungen wurde die Anreicherung des im raffinierten Öl enthaltenen \(\beta \)-Carotins weiterverfolgt.

5.5.2 Fraktionierung von Fettsäuremethylestern und \(\beta \)-Carotin

Die Fraktionierung von \(\beta \)-Carotin und den in der Alkoholyse entstandenen Methylestern konnte in der Gegenstromextraktionskolonne wegen der zu wenig präzisen Regelungstechnik nicht in geplanter Weise durchgeführt werden. Die Trennversuche zeigten jedoch, dass die Trennung generell möglich ist.

Bei der Anreicherung von \(\beta \)-Carotin tritt der Fall auf, dass sich oberhalb einer bestimmten Sättigungskonzentration eine feste Carotinphase ausbildet, die zusammen mit den Fettsäuremethylestern als Suspension vorliegt. Der Einsatz einer Trennkolonne ist in diesem Fall ungeeignet, weil durch ein mögliches Absetzen in der Kolonnenpackung Störungen auftreten. Wesentlich geeigneter wäre der Einsatz der Mixer-Settler-Apparatur, die jedoch zum Zeitpunkt der Untersuchungen nicht zur Verfügung stand. Die zwangsweise Durchmischung und anschließende Trennung in Zyklonen ermöglichen den Einsatz der Anlage für sehr viskose Mischungen bis hin zu fließfähigen Suspensionen. Die Gefahr des Flutens der Anlage besteht kaum, weil die zur Trennung im Zylinder erforderlichen Dichtedifferenzen geringer sind. Des Weiteren besitzt die Anlage die für die Trennung notwendige exakte Regelungstechnik.
Für die als optimal erachteten Prozessbedingungen von 320 K und 15 MPa sind die Ergebnisse der trenntechnischen Analyse in Bild 72 dargestellt. Bei einem Rücklaufverhältnis zwischen 0,5 und 1 sind für die angestrebte Trennung 4 bis 5 Trennstufen und ein Lösemittelverhältnis von 7 bis 12 erforderlich. Ausgehend von einem Gesamtwirkungsgrad der Mixer-Settler-Batterie von 80 % können die 4 Trennstufen realisiert werden.

5.5.3 Reinigung von Rohtocopherol

Zur Reinigung von Rohtocopherol werden neben den Versuchen zur adsorptiven Entfärbung auch auf Phasengleichgewichtsmessungen basierende theoretische Untersuchungen zur Entfernung der leichtflüchtigen Verunreinigungen mittels SFE durchgeführt. Der hinter diesen Untersuchungen stehende, geplante Trennprozess ist auf Seite 75 in Bild 42 dargestellt. Bei der Auswahl der Prozessparameter Druck und Temperatur muss beachtet werden, dass eine Trennkolonne bei den vorliegenden CO₂-Dichten noch ohne Fluten betrieben werden kann. Die Dichte der Flüssigphase liegt nach Meier [82] für die untersuchten Druck- und Temperaturbereiche bei 920 kg/m³. Wegen der erforderlichen minimalen Dichtedifferenz von 150 kg/m³ soll die Dichte der überkritischen Phase den Wert von 770 kg/m³ nicht überschreiten. Zur Vermeidung aufwendiger Dichtemessungen wird vereinfachend angenommen, dass die Dichte der überkritischen Phase der des reinen CO₂

Bei der folgenden trenntechnischen Analyse wird davon ausgegangen, dass die farbgebenden schwerflüchtigen Komponenten durch Adsorption an Silica zuvor abgetrennt wurden und dass nun die Aufgabe darin besteht, die 2 Ma% leichtflüchtigen Verunreinigungen mittels Gegenstrom-SFE zu entfernen. Für die Simulation werden Bedingungen ausgewählt, die hinsichtlich Beladung, Gasdichte und Selektivität geeignet erscheinen. Für $T = 373$ K und $P = 33$ MPa wird bei nicht zu hoher Gasdichte von 696 kg/m³ eine Beladung von 2,6 Ma% erreicht. Da die Selektivität durch Druck und Temperatur kaum beeinflusst wird (Bild 41), können diese Parameter allein hinsichtlich einer hohen Beladung bei nicht zu hoher Gasdichte gewählt werden.

Für die ausgewählten Bedingungen beträgt der Wert des Trennfaktors $\alpha_{LFK,Toco} = 4,85$ und die Beladungen $N_E = 37,9$ sowie $N_R = 0,425$. In Bild 73 sind die Ergebnisse der Berechnungen für die hinsichtlich der Zusammensetzung getroffenen Annahmen aufgetragen. Ein Rücklaufverhältnis zwischen 16 und 27 wird als sinnvoll erachtet. Unter dieser Vorgabe ergeben sich die im eingezeichneten Rechteck befindlichen Kombinationen von Prozessparametern. Bei 12 bis 20 theoretischen Trennstufen ist zum Erreichen der gewünschten Trennung ein Lösemittelverhältnis von 14 bis 24 notwendig.

Bild 73: Trenntechnische Analyse für Rohtocopherol
Anhang

Tabelle 24: Parameter für trenntechnische Analyse von CPO

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>e₁</th>
<th>e₂</th>
<th>r₁</th>
<th>r₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>20</td>
<td>4,8</td>
<td>-3,8</td>
<td>1</td>
<td>175,7</td>
<td>-122,6</td>
<td>0,4</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4,1</td>
<td>-3,1</td>
<td>1</td>
<td>113,4</td>
<td>-68,0</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3,7</td>
<td>-2,7</td>
<td>1</td>
<td>96,9</td>
<td>-72,1</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>340</td>
<td>20</td>
<td>15,2</td>
<td>-14,2</td>
<td>0,38</td>
<td>414,9</td>
<td>-294,9</td>
<td>0,3</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7,0</td>
<td>-6,0</td>
<td>0,66</td>
<td>233,4</td>
<td>-191,3</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,4</td>
<td>-6,4</td>
<td>0,45</td>
<td>116,3</td>
<td>-82,2</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>370</td>
<td>20</td>
<td>78,1</td>
<td>-77,1</td>
<td>0,20</td>
<td>3100,5</td>
<td>-3006,7</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>17,9</td>
<td>-16,9</td>
<td>0,48</td>
<td>593,2</td>
<td>-539,3</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>18,0</td>
<td>-17,0</td>
<td>0,30</td>
<td>209,1</td>
<td>-184,7</td>
<td>0,4</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Tabelle 25: Parameter für trenntechnische Analyse von FAME / β-Carotin

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>a₁</th>
<th>e₁</th>
<th>r₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>10,0</td>
<td>255</td>
<td>434</td>
<td>0,586</td>
</tr>
<tr>
<td></td>
<td>12,5</td>
<td>30</td>
<td>20,9</td>
<td>0,877</td>
</tr>
<tr>
<td></td>
<td>15,0</td>
<td>10</td>
<td>6,0</td>
<td>1,300</td>
</tr>
<tr>
<td>340</td>
<td>12,5</td>
<td>210</td>
<td>369,4</td>
<td>0,455</td>
</tr>
<tr>
<td></td>
<td>15,0</td>
<td>70</td>
<td>64,4</td>
<td>0,665</td>
</tr>
<tr>
<td></td>
<td>17,5</td>
<td>20</td>
<td>18,3</td>
<td>0,875</td>
</tr>
<tr>
<td></td>
<td>20,0</td>
<td>5</td>
<td>6,2</td>
<td>1,142</td>
</tr>
<tr>
<td>360</td>
<td>15,0</td>
<td>195</td>
<td>255,4</td>
<td>0,437</td>
</tr>
<tr>
<td></td>
<td>17,5</td>
<td>85</td>
<td>77,1</td>
<td>0,514</td>
</tr>
<tr>
<td></td>
<td>20,0</td>
<td>30</td>
<td>27,7</td>
<td>0,663</td>
</tr>
<tr>
<td></td>
<td>22,5</td>
<td>10</td>
<td>11,4</td>
<td>0,895</td>
</tr>
</tbody>
</table>
Tabelle 26: Parameter für trenntechnische Analyse von Rohtocopherol

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>a_{1,LFK,Toco}</th>
<th>e_1</th>
<th>r_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>30,0</td>
<td>5,43</td>
<td>39,8</td>
<td>0,349</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>4,86</td>
<td>31,4</td>
<td>0,398</td>
</tr>
<tr>
<td>353</td>
<td>30,0</td>
<td>5,72</td>
<td>45,1</td>
<td>0,343</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>4,93</td>
<td>33,0</td>
<td>0,393</td>
</tr>
<tr>
<td>363</td>
<td>30,0</td>
<td>5,93</td>
<td>46,4</td>
<td>0,345</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>4,93</td>
<td>33,7</td>
<td>0,377</td>
</tr>
<tr>
<td>373</td>
<td>30,0</td>
<td>5,95</td>
<td>49,0</td>
<td>0,382</td>
</tr>
<tr>
<td></td>
<td>33,0</td>
<td>4,85</td>
<td>37,9</td>
<td>0,425</td>
</tr>
</tbody>
</table>

Tabelle 27: Dichten der koexistierenden Phasen des Stoffsystems CPO / CO₂ nach [75]

<table>
<thead>
<tr>
<th>T / K</th>
<th>P / MPa</th>
<th>(\rho_V) / (kg/m³)</th>
<th>(\rho_L) / (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>15,6</td>
<td>668</td>
<td>908</td>
</tr>
<tr>
<td></td>
<td>20,4</td>
<td>758</td>
<td>914</td>
</tr>
<tr>
<td></td>
<td>25,4</td>
<td>814</td>
<td>921</td>
</tr>
<tr>
<td>340</td>
<td>20..30</td>
<td>(\rho_V = 38,8 + 48,3 \cdot P - 0,743 \cdot P^2)</td>
<td>(\rho_L = 881 + 1,21 \cdot P)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>708</td>
<td>905</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>782</td>
<td>911</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>819</td>
<td>917</td>
</tr>
<tr>
<td>353</td>
<td>15,8</td>
<td>513</td>
<td>886</td>
</tr>
<tr>
<td></td>
<td>20,8</td>
<td>644</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>25,8</td>
<td>740</td>
<td>896</td>
</tr>
<tr>
<td>370</td>
<td>20..30</td>
<td>(\rho_V = -234 + 50,3 \cdot P - 0,677 \cdot P^2)</td>
<td>(\rho_L = 853 + 0,747 \cdot P)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>501</td>
<td>868</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>600</td>
<td>872</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>666</td>
<td>875</td>
</tr>
<tr>
<td>373</td>
<td>15,5</td>
<td>366</td>
<td>860</td>
</tr>
<tr>
<td></td>
<td>21,0</td>
<td>501</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td>25,8</td>
<td>592</td>
<td>867</td>
</tr>
</tbody>
</table>
Tabelle 28: Trenntechnische Analyse der Kolonnenversuche mit CPO 340 K (4,6 Ma% FFA) experimentelle Daten berechnet

<table>
<thead>
<tr>
<th>P / MPa</th>
<th>(\dot{m}_{\text{LM}}) / (kg/h)</th>
<th>(\dot{m}_{\text{F}}) / (g/h)</th>
<th>(\dot{m}_{\text{E}}) / (g/h)</th>
<th>(x_{\text{LFK,E}}) / Ma%</th>
<th>(\dot{m}_{\text{R}}) / (g/h)</th>
<th>(x_{\text{LFK,R}}) / Ma%</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(n_{\text{th}}) Jän</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3,0</td>
<td>104</td>
<td>5,0</td>
<td>48</td>
<td>99</td>
<td>2,1</td>
<td>8,0</td>
<td>5,2</td>
<td>5,7</td>
<td>98,3</td>
<td>3,7</td>
</tr>
<tr>
<td>25</td>
<td>2,0</td>
<td>52</td>
<td>6,0</td>
<td>36</td>
<td>46</td>
<td>0,8</td>
<td>12,8</td>
<td>6,5</td>
<td>5,6</td>
<td>46,4</td>
<td>8,6</td>
</tr>
<tr>
<td>25</td>
<td>2,0</td>
<td>80</td>
<td>6,8</td>
<td>40</td>
<td>74</td>
<td>1,3</td>
<td>10,6</td>
<td>5,8</td>
<td>6,8</td>
<td>73,2</td>
<td>7,9</td>
</tr>
<tr>
<td>25</td>
<td>2,0</td>
<td>95</td>
<td>10,0</td>
<td>36</td>
<td>84</td>
<td>1,9</td>
<td>7,8</td>
<td>5,8</td>
<td>6,7</td>
<td>88,3</td>
<td>∞</td>
</tr>
<tr>
<td>30</td>
<td>1,0</td>
<td>44</td>
<td>6,0</td>
<td>29</td>
<td>36</td>
<td>0,8</td>
<td>5,2</td>
<td>4,7</td>
<td>5,9</td>
<td>38,1</td>
<td>5,9</td>
</tr>
</tbody>
</table>

Tabelle 29: Trenntechnische Analyse der Kolonnenversuche mit CPO 370 K (4,6 Ma% FFA) experimentelle Daten berechnet

<table>
<thead>
<tr>
<th>P / MPa</th>
<th>(\dot{m}_{\text{LM}}) / (kg/h)</th>
<th>(\dot{m}_{\text{F}}) / (g/h)</th>
<th>(\dot{m}_{\text{E}}) / (g/h)</th>
<th>(x_{\text{LFK,E}}) / Ma%</th>
<th>(\dot{m}_{\text{R}}) / (g/h)</th>
<th>(x_{\text{LFK,R}}) / Ma%</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(\dot{m}_{\text{R,LFK}}) / (g/h)</th>
<th>(n_{\text{th}}) Jän</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2,0</td>
<td>82</td>
<td>6,5</td>
<td>40</td>
<td>75</td>
<td>1,9</td>
<td>0,0</td>
<td>0,0</td>
<td>5,8</td>
<td>76,2</td>
<td>5,2</td>
</tr>
<tr>
<td>25</td>
<td>2,5</td>
<td>82</td>
<td>6,5</td>
<td>37</td>
<td>76</td>
<td>1,7</td>
<td>0,0</td>
<td>0,0</td>
<td>6,7</td>
<td>75,3</td>
<td>2,9</td>
</tr>
<tr>
<td>25</td>
<td>3,0</td>
<td>81</td>
<td>9,0</td>
<td>38</td>
<td>70</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
<td>8,1</td>
<td>72,9</td>
<td>5,1</td>
</tr>
<tr>
<td>25</td>
<td>3,5</td>
<td>80</td>
<td>10,0</td>
<td>38</td>
<td>70</td>
<td>0,8</td>
<td>0,0</td>
<td>0,0</td>
<td>8,2</td>
<td>71,8</td>
<td>5,4</td>
</tr>
<tr>
<td>25</td>
<td>3,5</td>
<td>74</td>
<td>9,5</td>
<td>31</td>
<td>64</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
<td>9,1</td>
<td>64,9</td>
<td>2,6</td>
</tr>
<tr>
<td>25</td>
<td>4,0</td>
<td>74</td>
<td>12,0</td>
<td>29</td>
<td>64</td>
<td>0,8</td>
<td>0,0</td>
<td>0,0</td>
<td>10,0</td>
<td>64,0</td>
<td>2,5</td>
</tr>
<tr>
<td>25</td>
<td>4,5</td>
<td>71</td>
<td>12,0</td>
<td>27</td>
<td>61</td>
<td>0,8</td>
<td>0,0</td>
<td>0,0</td>
<td>10,3</td>
<td>60,7</td>
<td>2,2</td>
</tr>
<tr>
<td>25</td>
<td>4,5</td>
<td>71</td>
<td>4,4</td>
<td>43</td>
<td>66</td>
<td>0,8</td>
<td>9,5</td>
<td>6,0</td>
<td>6,4</td>
<td>64,6</td>
<td>3,4</td>
</tr>
<tr>
<td>30</td>
<td>2,0</td>
<td>64</td>
<td>13,0</td>
<td>23</td>
<td>49</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
<td>10,7</td>
<td>53,3</td>
<td>1,9</td>
</tr>
<tr>
<td>30</td>
<td>2,0</td>
<td>62</td>
<td>7,0</td>
<td>42</td>
<td>54</td>
<td>0,9</td>
<td>8,1</td>
<td>9,5</td>
<td>5,6</td>
<td>56,4</td>
<td>2,9</td>
</tr>
<tr>
<td>30</td>
<td>2,5</td>
<td>74</td>
<td>4,6</td>
<td>47</td>
<td>70</td>
<td>0,2</td>
<td>16,2</td>
<td>13,3</td>
<td>7,0</td>
<td>67,0</td>
<td>4,9</td>
</tr>
<tr>
<td>30</td>
<td>3,0</td>
<td>63</td>
<td>6,0</td>
<td>46</td>
<td>56</td>
<td>0,8</td>
<td>20,6</td>
<td>19,2</td>
<td>5,2</td>
<td>57,8</td>
<td>2,7</td>
</tr>
<tr>
<td>30</td>
<td>3,0</td>
<td>78</td>
<td>4,5</td>
<td>41</td>
<td>73</td>
<td>0,2</td>
<td>20,7</td>
<td>13,9</td>
<td>8,4</td>
<td>69,6</td>
<td>4,4</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

[28] Cornelius JA: Palm Oil and Palm Kernel Oil. Prog Chem Fats Lipids. 15, (1977), 5-27

[38] Ender U: Der Einfluss der Druckpulsation auf die überkritische Fluidextraktion von Monoglyceriden. Erlangen: Dissertation 1989

142 Literaturverzeichnis

[61] L’Air Liquide Division Scientifique: Encyclopedie des Gaz; Amsterdam: Elsevier 1976

[70] Lion Fat and Oil Company Limited: UK Patent 1515238: Method of recovering carotene concentrate (1978)

[75] Machado NT: Unveröffentlichte Daten

[76] Maclellan M: Palm Oil. JAOCs. 60, (1983), 2, 368-373

Literaturverzeichnis

[93] Ooi CK, Bhaskar A, Yener MS, Tuan DQ, Hsu J, Rizvi SSH: Continuous Supercritical Carbon Dioxide Processing of Palm Oil. JAOCS. 73, (1996), 2, 233-237

[107] Reber G: Extraction of Oil of the fibers of the Palm Fruit "Dende" (Elaeis Guineensis) and out of the Pulp of "Buriti" (Mauritia Flexuosa) using Supercritical Carbon Dioxide. Hamburg: Diplomarbeit (TUHH) 1997

[117] Schaffner D: Stoff- und Phasentrennmodul für die Extraktion mit “Supercritical Fluids”. Zürich: Dissertation (10358 ETH) 1993

[124] Siew WL, Mohammad Y: The Effect of Fruit Storage on Palm Oil Bleachability. JAOCS. 69, (1992), 12, 1266-1268

[134] Tan BK, Oh FCH: Malaysian Palm Oil – Chemical and physical characteristics. PORIM Technology 3, (1981), 1-5

[139] Universiti Sains Malaysia: UK Patent 1 562 794: An improved method for the extraction of carotenes from Palm Oil. 1980
147

Van der Waals JD: Molekulartheorie eines Körpers, der aus zwei verschiedenen Stoffen besteht. Z Phys Chemie Stoechiom Verwandtschaftsl. 5, (1890), 133-173

van Gaver D: Fractionatie van vetzuuresters met supercritische extractie. Gent: Dissertation 1992

van Konynenburg PH, Scott RL: Critical lines and phase equilibria in binary van der Waals mixtures. Phil Trans Roy Soc. 298, (1980), 728-730

Yu ZR, Rizvi SSH, Zollweg JA: Phase equilibria of oleic acid, methyl oleate, and anhydrous milk fat in supercritical carbon dioxide. J Supercrit Fluids. 5, (1992), 114-122

Ziegler GR, Liaw YJ: Deodorization and Deacidification of Edible Oils with Dense Carbon Dioxide. JAOCS. 70, (1993), 10, 947-952

Lebenslauf in Kurzform

Persönliche Daten
Vor- und Zuname: Martin Jungfer
Geburtsdatum, -ort: 20.03.1972, Bonn-Duisdorf
Familienstand: verheiratet
Staatsangehörigkeit: deutsch

Ausbildung
05/1996 - 10/1996: Diplomarbeit (Kooperation zwischen der F. Hoffmann-La Roche AG und der TUHH), Kaiseraugst, Schweiz, und Hamburg
12/1996: Abschluss als Diplom-Ingenieur der Verfahrenstechnik
06.07.2000: Mündliche Promotionsprüfung

Berufserfahrung
02/1992 – 03/1992: Praktikum (Konstruktionsbüro), Kuhnke GmbH, Malente
11/1995 – 02/1996: Praktikum (Prozesstechnik), BASF Corporation, Geismar, USA
Seit 02/2000: Ingenieur der Firma Universaltex, La Paz, Bolivien