Titel: Topics in abstract order geometry
Sonstige Titel: Themen in abstrakter Anordnungsgeometrie
Themen in abstrakter Anordnungsgeometrie
Sprache: Englisch
Autor/Autorin: Retter, Wolfram
Schlagwörter: Anordnungsgeometrie;Intervallräume;order geometry;interval spaces;ordered geometry
Erscheinungsdatum: 2014
Zusammenfassung (deutsch): Ein Intervallraum ist eine Menge mit einer dreistelligen Relation, die ein paar Axiome erfüllt, welche die Interpretation der dreistelligen Relation als die Lage eines Punktes zwischen zwei Punkten unterstützt. Ein paar neue Begriffe, einschließlich denjenigen eines topologischen, eines quadrimodularen und eines quadrimedianen Intervallraums und eines geodätischen quadrimedianen Abschlusses werden entwickelt. Ein hinreichendes Kriterium für die Einbettbarkeit eines Intervallraums in einen medianen metrischen Raum wird bewiesen. Für zwei zentrale Struktursätze der Analysis und der Algebra wird bewiesen, dass Analoga für quadrimediane Räume gültig sind, aber für mediane Räume nicht zutreffen.
Zusammenfassung (englisch): An interval space is a set with a ternary relation satisfying some axioms that support the interpretation of the ternary relation as location of a point between two points. Some new concepts, including those of a topological, a quadrimodular and a quadrimedian interval space and a geodesic quadrimedian closure are developed. A sufficient criterion for embeddability of an interval space into a median metric space is proved. For two central structure theorems of analysis and algebra it is proved that analogues are valid for quadrimedian spaces, but do not hold in general for median spaces.
URI: http://tubdok.tub.tuhh.de/handle/11420/1156
URN: urn:nbn:de:gbv:830-tubdok-12539
DOI: 10.15480/882.1154
Institut: Rechnertechnologie E-13
Computer Technology E-13
Studienbereich: Elektrotechnik und Informationstechnik
Dokumenttyp: Dissertation
Hauptberichter: Zimmermann, Karl-Heinz
Gradverleihende Einrichtung: Technische Universität Hamburg
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
201311RetterThesis_1.pdf717,48 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.