Verlagslink DOI: 10.1016/j.apnum.2006.09.011
Titel: Finite volume evolution Galerkin (FVEG) methods for three-dimensional wave equation system
Sprache: Englisch
Autor/Autorin: Medviďová-Lukáčová, Mária
Warnecke, Gerald
Zahaykah, Yousef
Schlagwörter: Hyperbolic systems;wave equation;evolution Galerkin schemes;recovery stage;finite volume
Erscheinungsdatum: 2004
Quellenangabe: Preprint. Published in: Applied Numerical Mathematics Volume 57, Issue 9, September 2007, Pages 1050-1064
Serie/Report Nr.: Preprints des Institutes für Mathematik;Bericht 80
Zusammenfassung (englisch): The subject of the paper is the derivation of finite volume evolution Galerkin schemes for three-dimensional wave equation system. The aim is to construct methods which take into account all of the infinitely many directions of propagation of bicharacteristics. The idea is to evolve the initial function using the characteristic cone and then to project onto a finite element space. Numerical experiments are presented to demonstrate the accuracy and the multidimensional behaviour of the solutions. Moreover, we construct further new EG schemes by neglecting the so-called source term, i.e. we mimic Kirchhoff's formula. The numerical test shows that such schemes are more accurate and some of them are of second order.
URI: http://tubdok.tub.tuhh.de/handle/11420/119
URN: urn:nbn:de:gbv:830-opus-1752
DOI: 10.15480/882.117
Institut: Mathematik E-10
Mathematics E-10
Dokumenttyp: Preprint (Vorabdruck)
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
rep80.pdf1,34 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.