Titel: On evolution Galerkin Methods for the Maxwell and the linearezed Euler equations
Sprache: Englisch
Autor/Autorin: Medviďová-Lukáčová, Mária
Saibertova, Jitka
Warnecke, Gerald
Zahaykah, Yousef
Schlagwörter: hyperbolic systems;wave equation;evolution Galerkin schemes;Maxwell equations;linearized Euler equations
Erscheinungsdatum: 2003
Zusammenfassung (englisch): The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical experiments for both the Maxwell and the linearized Euler equations.
URI: http://tubdok.tub.tuhh.de/handle/11420/133
URN: urn:nbn:de:gbv:830-opus-1921
DOI: 10.15480/882.131
Institut: Mathematik E-10
Mathematics E-10
Dokumenttyp: ResearchPaper
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
rep55.pdf211,12 kBAdobe PDFMiniaturbild

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.