DC ElementWertSprache
dc.contributor.authorOh, Won‐suck-
dc.contributor.authorGötzen, Nils-
dc.contributor.authorAnusavice, Kenneth J.-
dc.date.accessioned2018-03-29T14:01:18Z-
dc.date.available2018-03-29T14:01:18Z-
dc.date.issued2002-
dc.identifier.citationJournal of dental research 9 (81): 623-627 (2002-09)de_DE
dc.identifier.issn0022-0345de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1614-
dc.description.abstractFracture of ceramic fixed-partial dentures (FPDs) tends to occur in the connector area because of stress concentrations. The objective of this study was to test the hypothesis that the radius of curvature at the gingival embrasure of the FPD connector significantly affects the fracture resistance of three-unit FPDs. Two three-dimensional finite element models (FEMs), representing two FPD connector designs, were created in a manner corresponding to that described in a previous experimental study (Oh, 2002). We performed fractographic analysis and FEM analyses based on CARES (NASA) post-processing software to determine the crack initiation site as well as to predict the characteristic strength, the location of peak stress concentrations, and the risk-of-rupture intensities. A good correlation was found between the experimentally measured failure loads and those predicted by FEM simulation analyses. Fractography revealed fracture initiation at the gingival embrasure, which confirms the numerically predicted fracture initiation site. For the designs tested, the radius of curvature at the gingival embrasure strongly affects the fracture resistance of FPDs.en
dc.language.isoende_DE
dc.publisherSagede_DE
dc.relation.ispartofJournal of dental researchde_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectCeramicsde_DE
dc.subjectComputer Simulationde_DE
dc.subjectDental Abutmentsde_DE
dc.subjectFinite Element Analysisde_DE
dc.subjectHumansde_DE
dc.subjectMaterials Testingde_DE
dc.subjectProbabilityde_DE
dc.subjectReproducibility of Resultsde_DE
dc.subjectStatistics as Topicde_DE
dc.subjectStress, Mechanicalde_DE
dc.subjectSurface Propertiesde_DE
dc.subjectWeight-Bearingde_DE
dc.subjectDental Restoration Failurede_DE
dc.subjectDenture Designde_DE
dc.subjectDenture, Partial, Fixedde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleInfluence of connector design on fracture probability of ceramic fixed-partial denturesde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88220181-
dc.identifier.doi10.15480/882.1611-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88220181de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1614-
tuhh.abstract.englishFracture of ceramic fixed-partial dentures (FPDs) tends to occur in the connector area because of stress concentrations. The objective of this study was to test the hypothesis that the radius of curvature at the gingival embrasure of the FPD connector significantly affects the fracture resistance of three-unit FPDs. Two three-dimensional finite element models (FEMs), representing two FPD connector designs, were created in a manner corresponding to that described in a previous experimental study (Oh, 2002). We performed fractographic analysis and FEM analyses based on CARES (NASA) post-processing software to determine the crack initiation site as well as to predict the characteristic strength, the location of peak stress concentrations, and the risk-of-rupture intensities. A good correlation was found between the experimentally measured failure loads and those predicted by FEM simulation analyses. Fractography revealed fracture initiation at the gingival embrasure, which confirms the numerically predicted fracture initiation site. For the designs tested, the radius of curvature at the gingival embrasure strongly affects the fracture resistance of FPDs.de_DE
tuhh.publisher.doi10.1177/154405910208100909-
tuhh.publication.instituteBiomechanik M-3de_DE
tuhh.identifier.doi10.15480/882.1611-
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.institute.germanBiomechanik M-3de
tuhh.institute.englishBiomechanik M-3de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.type.casraiJournal Articleen
tuhh.container.issue9de_DE
tuhh.container.volume81de_DE
tuhh.container.startpage623de_DE
tuhh.container.endpage627de_DE
dc.rights.nationallicensetruede_DE
dc.rights.nltextDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich. This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.de_DE
item.grantfulltextopen-
item.creatorGNDOh, Won‐suck-
item.creatorGNDGötzen, Nils-
item.creatorGNDAnusavice, Kenneth J.-
item.creatorOrcidOh, Won‐suck-
item.creatorOrcidGötzen, Nils-
item.creatorOrcidAnusavice, Kenneth J.-
item.fulltextWith Fulltext-
Enthalten in den Sammlungen:tub.dok
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
154405910208100909.pdfVerlags-PDF64,47 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

106
Letzte Woche
0
Letzten Monat
0
checked on 10.12.2018

Download(s)

28
checked on 10.12.2018

Google ScholarTM

Prüfe

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.