Dieses Dokument steht unter einer CreativeCommons Lizenz by/3.0
Verlagslink DOI: 10.1088/0965-0393/24/8/085016
Titel: Fourth-order strain-gradient phase mixture model for nanocrystalline fcc materials
Sprache: English
Autor/Autorin: Klusemann, Benjamin 
Bargmann, Swantje 
Estrin, Yuri 
Schlagwörter: nanocrystalline material;gradient plasticity;higher order gradient terms;constitutive modeling
Erscheinungsdatum: 2-Nov-2016
Verlag: Institute of Physics Publishing
Quellenangabe: Modelling and Simulation in Materials Science and Engineering 8 (24): 085016 (2016)
Zeitschrift oder Schriftenreihe: Modelling and Simulation in Materials Science and Engineering 
Zusammenfassung (englisch): The proposed modeling approach for nanocrystalline materials is an extension of the local phase mixture model introduced by Kim et al (2000 Acta Mater. 48 493–504). Local models cannot account for any non-uniformities or strain patterns, i.e. such models describe the behavior correctly only as long as it is homogeneous. In order to capture heterogeneities, the phase mixture model is augmented with gradient terms of higher order, namely second and fourth order. Different deformation mechanisms are assumed to operate in grain interior and grain boundaries concurrently. The deformation mechanism in grain boundaries is associated with diffusional mass transport along the boundaries, while in the grain interior dislocation glide as well as diffusion controlled mechanisms are considered. In particular, the mechanical response of nanostructured polycrystals is investigated. The model is capable of correctly predicting the transition of flow stress from Hall–Petch behavior in conventional grain size range to an inverse Hall–Petch relation in the nanocrystalline grain size range. The consideration of second- and fourth-order strain gradients allows non-uniformities within the strain field to represent strain patterns in combination with a regularization effect. Details of the numerical implementation are provided.
URI: http://tubdok.tub.tuhh.de/handle/11420/1696
DOI: 10.15480/882.1693
ISSN: 1361-651X
Institut: Kontinuums- und Werkstoffmechanik M-15 
Dokumenttyp: (wissenschaftlicher) Artikel
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Klusemann_2016_Modelling_Simul._Mater._Sci._Eng._24_085016.pdfVerlags-PDF2,74 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige

Seitenansichten

54
Letzte Woche
0
Letzten Monat
2
checked on 23.09.2018

Download(s)

6
checked on 23.09.2018

Google ScholarTM

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.