Titel: Information optimum design of discrete LDPC decoders for irregular codes
Sprache: English
Autor/Autorin: Stark, Maximilian  
Schlagwörter: LDPC codes;information theorie;information bottleneck method;machine learning
Erscheinungsdatum: 2018
Zusammenfassung (deutsch): Eine leistungsfähige Vorwärtsfehlerkorrektur ist für jedes moderne Kommunikationssystem essentiell. Um die gesamte Fehlerkorrekturfähigkeit von Kanalcodes wie Low Density Parity Check (LDPC)-Codes nutzen zu können, muss jedoch eine rechnerisch anspruchsvolle Decodierung am Empfänger erfolgen. Insbesondere in Szenarien, in denen die Leistung der Endgeräte oder Latenz der Übertragung begrenzt sind, sind effiziente Decodieralgorithmen von entscheidender Bedeutung. In dieser Arbeit wurde ein neuartiger Dekodierungsansatz entwickelt, der Ideen aus der Informationstheorie und dem maschinellen Lernen kombiniert und zu einem so genannten informationsoptimalen LDPC-Decoder führt. Insbesondere wurde die Information Bottleneck Methode verwendet, um sehr kompakte Darstellungen der in belief-propagation decoding ausgetauschten Nachrichten zu erhalten. Der Dekodierungsansatz wurde zudem verallgemeinert, um diesen auch für praktisch relevante irreguläre LDPC-Codes anwendbar zu machen. Dazu wurde eine weitere Technik entwickelt, das sogenannte „message alingment“. Als Ergebnis konnten LDPC-Dekodierer konstruiert werden, die eine nahezu optimale Leistung (0,2 dB Leistungsverschlechterung) bei sehr geringer Komplexität erreichen. Computersimulationen für irreguläre LDPC-Codes aus dem IEEE 802.11 (WLAN) und DVB-S2 Standard belegen die Anwendbarkeit der entwickelten Decoder auch in standardisierten Kommunikationssystemen.
Zusammenfassung (englisch): Powerful forward error correction is inevitable for every modern communication system. However, leveraging all error correction capabilities offered by channel codes like low density parity check (LDPC) codes, introduces the burden of computationally demanding decoding at the receiver. Especially in power or latency restricted scenarios, efficient decoding algorithms are of crucial importance. In this thesis a novel decoding approach combining ideas from information theory and machine learning was developed, resulting in a so-called information-optimum LDPC decoder. In particular, the information bottleneck method was used to obtain very compact representations of the exchanged beliefs while performing belief propagation decoding. To generalize the decoding approach, to be applicable also for practically relevant irregular LDPC codes another technique called message alignment was devised. As a result, LDPC decoders can be constructed which pair very low-complexity and near-optimum performance (0.2dB performance degradation). Computer simulations for irregular LDPC codes from the IEEE 802.11 (WLAN) and DVB-S2 standard proof the applicability of the developed decoders also in standardized communication systems.
URI: http://tubdok.tub.tuhh.de/handle/11420/1713
DOI: 10.15480/882.1710
Institut: Nachrichtentechnik E-8 
Dokumenttyp: Masterarbeit
Hauptberichter: Bauch, Gerhard 
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Masterthesis_Maximilian_Stark.pdfMasterthesis1,09 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige

Seitenansichten

87
checked on 17.07.2018

Download(s)

19
checked on 17.07.2018

Google ScholarTM

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.