Titel: A modal approach for the gyroscopic quadratic eigenvalue problem
Sprache: Englisch
Autor/Autorin: Voß, Heinrich
Elssel, Kolja
Schlagwörter: Quadratic eigenvalue problem;gyroscopic eigenproblem;automated multilevel
Erscheinungsdatum: 2004
Quellenangabe: Proc. of ECCOMAS 2004, Jyväskylä, Finland 2004. ISBN 951-39-1869-6
Zusammenfassung (englisch): The Automated Multi-Level Substructuring (AMLS) has been developed to reduce the computational demands of frequency response analysis. AMLS automatically divides a large finite element model into many substructures on a number of levels based on the sparsity structure of the system matrices. Assuming that the interior degrees of freedom depend quasistatically on the interface degrees of freedom, and modeling the deviation from quasistatic dependence in terms of a small number of selected substructure eigenmodes the size of the finite element model is reduced substantially. In this paper we consider conservative gyroscopic eigenvalue problems. The original AMLS method neglects the gyroscopic effects. We generalize the AMLS approach taking advantage of the fact that for gyroscopic problems there exists a basis of eigenvectors which can be used when modeling the deviation from quasistatic behaviour. In both cases the resulting quadratic eigenproblem is still very large. We suggest to solve it by the nonlinear Arnoldi method taking advantage of the minmax characterization of its eigenvalues.
URI: http://tubdok.tub.tuhh.de/handle/11420/67
URN: urn:nbn:de:gbv:830-opus-1209
DOI: 10.15480/882.65
Institut: Mathematik E-10
Mathematics E-10
Dokumenttyp: InProceedings (Aufsatz / Paper einer Konferenz etc.)
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
rep73.pdf304,6 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.