Titel: Eigenvalue computations based on IDR
Sprache: Englisch
Autor/Autorin: Gutknecht, Martin
Zemke, Jens-Peter M.
Schlagwörter: Induzierte Dimensions-Reduktion;Krylov space method;iterative method;induced dimension reduction;large nonsymmetric eigenvalue problem
Erscheinungsdatum: 2010
Serie/Report Nr.: Preprints des Institutes für Mathematik;Bericht 145
Zusammenfassung (englisch): The Induced Dimension Reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator.
URI: http://tubdok.tub.tuhh.de/handle/11420/791
URN: urn:nbn:de:gbv:830-tubdok-8755
DOI: 10.15480/882.789
Institut: Mathematik E-10
Mathematics E-10
Dokumenttyp: Report (Bericht)
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
IDREig.pdf1,82 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.